These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19836404)

  • 21. ProtNet: a tool for stochastic simulations of protein interaction networks dynamics.
    Bernaschi M; Castiglione F; Ferranti A; Gavrila C; Tinti M; Cesareni G
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S4. PubMed ID: 17430571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of log-normal dynamics in the evolution of biochemical pathways.
    Nacher JC; Ochiai T; Yamada T; Kanehisa M; Akutsu T
    Biosystems; 2006 Jan; 83(1):26-37. PubMed ID: 16236424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae.
    Chen KC; Wang TY; Tseng HH; Huang CY; Kao CY
    Bioinformatics; 2005 Jun; 21(12):2883-90. PubMed ID: 15802287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk.
    Papin JA; Palsson BO
    J Theor Biol; 2004 Mar; 227(2):283-97. PubMed ID: 14990392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of negative feedback on noise propagation in transcriptional gene networks.
    Hooshangi S; Weiss R
    Chaos; 2006 Jun; 16(2):026108. PubMed ID: 16822040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC).
    An G
    Math Biosci; 2009 Jan; 217(1):43-52. PubMed ID: 18950646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Network capacity analysis for latent attractor computation.
    Doboli S; Minai AA
    Network; 2003 May; 14(2):273-302. PubMed ID: 12790185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-wide system analysis reveals stable yet flexible network dynamics in yeast.
    Gustafsson M; Hörnquist M; Björkegren J; Tegnér J
    IET Syst Biol; 2009 Jul; 3(4):219-28. PubMed ID: 19640161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relaxation dynamics and frequency response of a noisy cell signaling network.
    Rué P; Pons AJ; Domedel-Puig N; García-Ojalvo J
    Chaos; 2010 Dec; 20(4):045110. PubMed ID: 21198122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways.
    Hardy S; Robillard PN
    Bioinformatics; 2008 Jan; 24(2):209-17. PubMed ID: 18033796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analytic methods for modeling stochastic regulatory networks.
    Walczak AM; Mugler A; Wiggins CH
    Methods Mol Biol; 2012; 880():273-322. PubMed ID: 23361990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Stochastic resonance in weak signal detection by sensory systems].
    Liu J; Li G; Liu SL; Chen YQ
    Space Med Med Eng (Beijing); 2004 Oct; 17(5):360-4. PubMed ID: 15926235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Logical stochastic resonance with correlated internal and external noises in a synthetic biological logic block.
    Dari A; Kia B; Bulsara AR; Ditto WL
    Chaos; 2011 Dec; 21(4):047521. PubMed ID: 22225395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of the projection operator formalism to non-hamiltonian dynamics.
    Xing J; Kim KS
    J Chem Phys; 2011 Jan; 134(4):044132. PubMed ID: 21280712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attractor analysis of asynchronous Boolean models of signal transduction networks.
    Saadatpour A; Albert I; Albert R
    J Theor Biol; 2010 Oct; 266(4):641-56. PubMed ID: 20659480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theory of interface: category theory, directed networks and evolution of biological networks.
    Haruna T
    Biosystems; 2013 Nov; 114(2):125-48. PubMed ID: 24012823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noisy signal amplification in ultrasensitive signal transduction.
    Shibata T; Fujimoto K
    Proc Natl Acad Sci U S A; 2005 Jan; 102(2):331-6. PubMed ID: 15625116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of delays and noise on dopamine signal transduction.
    Wu J; Qi Z; Voit EO
    In Silico Biol; 2010; 10(1):67-80. PubMed ID: 22430222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade.
    Hooshangi S; Thiberge S; Weiss R
    Proc Natl Acad Sci U S A; 2005 Mar; 102(10):3581-6. PubMed ID: 15738412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A minimal model of signaling network elucidates cell-to-cell stochastic variability in apoptosis.
    Raychaudhuri S
    PLoS One; 2010 Aug; 5(8):e11930. PubMed ID: 20711445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.