These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 19836753)
1. Rapid determination of surfactant critical micelle concentrations using pressure-driven flow with capillary electrophoresis instrumentation. Stanley FE; Warner AM; Schneiderman E; Stalcup AM J Chromatogr A; 2009 Nov; 1216(47):8431-4. PubMed ID: 19836753 [TBL] [Abstract][Full Text] [Related]
2. Rapid determination of surfactant critical micelle concentration in aqueous solutions using fiber-optic refractive index sensing. Tan CH; Huang ZJ; Huang XG Anal Biochem; 2010 Jun; 401(1):144-7. PubMed ID: 20175982 [TBL] [Abstract][Full Text] [Related]
3. Determination of critical micelle concentration of surfactants by capillary electrophoresis. Lin CE J Chromatogr A; 2004 May; 1037(1-2):467-78. PubMed ID: 15214683 [TBL] [Abstract][Full Text] [Related]
4. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution. Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258 [TBL] [Abstract][Full Text] [Related]
5. Capillary electrophoretic studies on the migration behavior of cationic solutes and the influence of interactions of cationic solutes with sodium dodecyl sulfate on the formation of micelles and critical micelle concentration. Lin CE; Fang IJ; Deng Y; Liao WS; Cheng HT; Huang WP J Chromatogr A; 2004 Oct; 1051(1-2):85-94. PubMed ID: 15532559 [TBL] [Abstract][Full Text] [Related]
6. Controlling the melting of kinetically frozen poly(butyl acrylate-b-acrylic acid) micelles via addition of surfactant. Jacquin M; Muller P; Cottet H; Crooks R; Théodoly O Langmuir; 2007 Sep; 23(20):9939-48. PubMed ID: 17718579 [TBL] [Abstract][Full Text] [Related]
7. Formation and morphology of reverse micelles formed by nonionic surfactants in "dry" organic solvents. Pérez SV; Olea AF; Gárate MP Curr Top Med Chem; 2014; 14(6):774-80. PubMed ID: 24444151 [TBL] [Abstract][Full Text] [Related]
8. Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of Interactions between Phosphatidylcholine Biomembranes and Surfactants. Duša F; Chen W; Witos J; Wiedmer SK Langmuir; 2018 May; 34(20):5889-5900. PubMed ID: 29715032 [TBL] [Abstract][Full Text] [Related]
9. Ion-association extraction of nitrophenolate ions with tetrabutylammonium ion into nonionic surfactant micelle. Takayanagi T; Motomizu S J Chromatogr A; 2006 Nov; 1133(1-2):353-60. PubMed ID: 16938302 [TBL] [Abstract][Full Text] [Related]
10. Pseudo-homogeneous micelle extraction of ion-associates formed between tetrabutylammonium ion and some aromatic sulfonate ions into nonionic surfactant micelle studied through the mobility measurements in capillary zone electrophoresis. Takayanagi T; Motomizu S J Chromatogr A; 2007 Feb; 1141(2):295-301. PubMed ID: 17207490 [TBL] [Abstract][Full Text] [Related]
11. Equilibrium analysis of reactions between aromatic anions and nonionic surfactant micelles by capillary zone electrophoresis. Takayanagi T; Motomizu S J Chromatogr A; 1999 Aug; 853(1-2):55-61. PubMed ID: 10486712 [TBL] [Abstract][Full Text] [Related]
12. Effect of anionic-nonionic-mixed surfactant micelles on solubilization of PAHs. Shi Z; Chen J; Yin X J Air Waste Manag Assoc; 2013 Jun; 63(6):694-701. PubMed ID: 23858995 [TBL] [Abstract][Full Text] [Related]
13. Determination of the aggregation threshold of non-UV-absorbing, neutral or charged surfactants by frontal- and vacancy-frontal analysis continuous capillary electrophoresis. Le Saux T; Varenne A; Gareil P J Chromatogr A; 2004 Jul; 1041(1-2):219-26. PubMed ID: 15281272 [TBL] [Abstract][Full Text] [Related]
14. Determination of aggregation thresholds of UV absorbing anionic surfactants by frontal analysis continuous capillary electrophoresis. Le Saux T; Varenne A; Gareil P J Chromatogr A; 2004 Jun; 1038(1-2):275-82. PubMed ID: 15233542 [TBL] [Abstract][Full Text] [Related]
15. Capillary electrophoresis investigation on equilibrium between polymer-related and surfactant-related species in aqueous polymer-surfactant solutions. Wu Y; Chen M; Fang Y; Zhu M J Chromatogr A; 2017 Mar; 1489():134-142. PubMed ID: 28189259 [TBL] [Abstract][Full Text] [Related]
16. System peaks in micellar electrophoresis: I. Utilization of system peaks for determination of critical micelle concentration. Lokajová J; Hruska V; Tesarová E; Gas B Electrophoresis; 2008 Mar; 29(5):1189-95. PubMed ID: 18306180 [TBL] [Abstract][Full Text] [Related]
17. Micellar partitioning and its effects on Henry's law constants of chlorinated solvents in anionic and nonionic surfactant solutions. Zhang C; Zheng G; Nichols CM Environ Sci Technol; 2006 Jan; 40(1):208-14. PubMed ID: 16433353 [TBL] [Abstract][Full Text] [Related]
18. Comparing Decyl-beta-maltoside and Octaethyleneglycol Mono n-Decyl Ether in Mixed Micelles with Dodecyl Benzenesulfonate. Liljekvist P; Kronberg B J Colloid Interface Sci; 2000 Feb; 222(2):159-164. PubMed ID: 10662510 [TBL] [Abstract][Full Text] [Related]
19. Enhanced naphthalene solubility in the presence of sodium dodecyl sulfate: effect of critical micelle concentration. Huang HL; Lee WM Chemosphere; 2001 Aug; 44(5):963-72. PubMed ID: 11513430 [TBL] [Abstract][Full Text] [Related]
20. Polymeric sulfated surfactants with varied hydrocarbon tail: I. Synthesis, characterization, and application in micellar electrokinetic chromatography. Akbay C; Shamsi SA Electrophoresis; 2004 Feb; 25(4-5):622-34. PubMed ID: 14981690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]