These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19836830)

  • 1. Hierarchical scaffolds via combined macro- and micro-phase separation.
    George PA; Quinn K; Cooper-White JJ
    Biomaterials; 2010 Feb; 31(4):641-7. PubMed ID: 19836830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring cellular adhesion and differentiation in a micro-/nano-hybrid polymer scaffold.
    Cheng K; Kisaalita WS
    Biotechnol Prog; 2010; 26(3):838-46. PubMed ID: 20196160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of electrostatic spinning technology in nano-structured polymer scaffold].
    Chen D; Li M; Fang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Apr; 21(4):411-5. PubMed ID: 17546890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembling polystyrene-block-poly(ethylene oxide) copolymer surface coatings: resistance to protein and cell adhesion.
    George PA; Donose BC; Cooper-White JJ
    Biomaterials; 2009 May; 30(13):2449-56. PubMed ID: 19201020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces.
    Son J; Kim G
    J Biomater Sci Polym Ed; 2009; 20(14):2089-101. PubMed ID: 19874679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating protein gradient into electrospun nanofibers as scaffolds for tissue engineering.
    Shi J; Wang L; Zhang F; Li H; Lei L; Liu L; Chen Y
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1025-30. PubMed ID: 20423122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX; Ren J; Chen C; Ren TB; Zhou XY
    J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials.
    Ovsianikov A; Schlie S; Ngezahayo A; Haverich A; Chichkov BN
    J Tissue Eng Regen Med; 2007; 1(6):443-9. PubMed ID: 18265416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofibrous scaffold engineering using electrospinning.
    Murugan R; Huang ZM; Yang F; Ramakrishna S
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4595-603. PubMed ID: 18283850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation.
    Rowlands AS; Lim SA; Martin D; Cooper-White JJ
    Biomaterials; 2007 Apr; 28(12):2109-21. PubMed ID: 17258315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo-vascularization and cellular infiltration.
    Lim TC; Chian KS; Leong KF
    J Biomed Mater Res A; 2010 Sep; 94(4):1303-11. PubMed ID: 20694998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro.
    Karp JM; Shoichet MS; Davies JE
    J Biomed Mater Res A; 2003 Feb; 64(2):388-96. PubMed ID: 12522827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of collagen hybridized elastic PLCL for tissue engineering.
    Lim JI; Yu B; Lee YK
    Biotechnol Lett; 2008 Dec; 30(12):2085-90. PubMed ID: 18661107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured natural-based polyelectrolyte multilayers to agglomerate chitosan particles into scaffolds for tissue engineering.
    Miranda ES; Silva TH; Reis RL; Mano JF
    Tissue Eng Part A; 2011 Nov; 17(21-22):2663-74. PubMed ID: 21790302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Applications of atomic force microscopy in tissue engineering].
    Liang Z; Zhou C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Feb; 26(1):199-201. PubMed ID: 19334586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector.
    Reckhenrich AK; Hopfner U; Krötz F; Zhang Z; Koch C; Kremer M; Machens HG; Plank C; Egaña JT
    Biomaterials; 2011 Mar; 32(7):1996-2003. PubMed ID: 21159378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.