These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19837083)

  • 1. Switching from an induced-fit to a lock-and-key mechanism in an aminoacyl-tRNA synthetase with modified specificity.
    Schmitt E; Tanrikulu IC; Yoo TH; Panvert M; Tirrell DA; Mechulam Y
    J Mol Biol; 2009 Dec; 394(5):843-51. PubMed ID: 19837083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo.
    Tanrikulu IC; Schmitt E; Mechulam Y; Goddard WA; Tirrell DA
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15285-90. PubMed ID: 19706454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectivity and specificity of substrate binding in methionyl-tRNA synthetase.
    Datta D; Vaidehi N; Zhang D; Goddard WA
    Protein Sci; 2004 Oct; 13(10):2693-705. PubMed ID: 15388861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single genomic copy of an engineered methionyl-tRNA synthetase enables robust incorporation of azidonorleucine into recombinant proteins in E. coli.
    Abdeljabbar DM; Klein TJ; Zhang S; Link AJ
    J Am Chem Soc; 2009 Dec; 131(47):17078-9. PubMed ID: 19894713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of β
    Nigro G; Bourcier S; Lazennec-Schurdevin C; Schmitt E; Marlière P; Mechulam Y
    J Struct Biol; 2020 Feb; 209(2):107435. PubMed ID: 31862305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive landscape flattening allows the design of both enzyme: Substrate binding and catalytic power.
    Opuu V; Nigro G; Gaillard T; Schmitt E; Mechulam Y; Simonson T
    PLoS Comput Biol; 2020 Jan; 16(1):e1007600. PubMed ID: 31917825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition state stabilization by a phylogenetically conserved tyrosine residue in methionyl-tRNA synthetase.
    Ghosh G; Brunie S; Schulman LH
    J Biol Chem; 1991 Sep; 266(26):17136-41. PubMed ID: 1654323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of Leishmania major methionyl-tRNA synthetase in complex with intermediate products methionyladenylate and pyrophosphate.
    Larson ET; Kim JE; Zucker FH; Kelley A; Mueller N; Napuli AJ; Verlinde CL; Fan E; Buckner FS; Van Voorhis WC; Merritt EA; Hol WG
    Biochimie; 2011 Mar; 93(3):570-82. PubMed ID: 21144880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of mesenchymal stem cell proteomes
    Han D; Yang J; Zhang E; Liu Y; Boriboun C; Qiao A; Yu Y; Sun J; Xu S; Yang L; Yan W; Luo B; Lu D; Zhang C; Jie C; Mobley J; Zhang J; Qin G
    Theranostics; 2020; 10(24):11324-11338. PubMed ID: 33042285
    [No Abstract]   [Full Text] [Related]  

  • 10. Mutations in MARS identified in a specific type of pulmonary alveolar proteinosis alter methionyl-tRNA synthetase activity.
    Comisso M; Hadchouel A; de Blic J; Mirande M
    FEBS J; 2018 Jul; 285(14):2654-2661. PubMed ID: 29775242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for anticodon recognition by methionyl-tRNA synthetase.
    Nakanishi K; Ogiso Y; Nakama T; Fukai S; Nureki O
    Nat Struct Mol Biol; 2005 Oct; 12(10):931-2. PubMed ID: 16155581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional structure of methionyl-tRNA synthetase from Pyrococcus abyssi.
    Crepin T; Schmitt E; Blanquet S; Mechulam Y
    Biochemistry; 2004 Mar; 43(9):2635-44. PubMed ID: 14992601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methionyl-tRNA synthetase.
    Deniziak MA; Barciszewski J
    Acta Biochim Pol; 2001; 48(2):337-50. PubMed ID: 11732605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An engineered methionyl-tRNA synthetase enables azidonorleucine incorporation in methionine prototrophic bacteria.
    Abdeljabbar DM; Klein TJ; Link AJ
    Chembiochem; 2011 Jul; 12(11):1699-702. PubMed ID: 21671329
    [No Abstract]   [Full Text] [Related]  

  • 15. Use of analogues of methionine and methionyl adenylate to sample conformational changes during catalysis in Escherichia coli methionyl-tRNA synthetase.
    Crepin T; Schmitt E; Mechulam Y; Sampson PB; Vaughan MD; Honek JF; Blanquet S
    J Mol Biol; 2003 Sep; 332(1):59-72. PubMed ID: 12946347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions.
    Senger B; Despons L; Walter P; Jakubowski H; Fasiolo F
    J Mol Biol; 2001 Aug; 311(1):205-16. PubMed ID: 11469869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-selective metabolic labeling of proteins.
    Ngo JT; Champion JA; Mahdavi A; Tanrikulu IC; Beatty KE; Connor RE; Yoo TH; Dieterich DC; Schuman EM; Tirrell DA
    Nat Chem Biol; 2009 Oct; 5(10):715-7. PubMed ID: 19668194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New method for the orthogonal labeling and purification of Toxoplasma gondii proteins while inside the host cell.
    Wier GM; McGreevy EM; Brown MJ; Boyle JP
    mBio; 2015 Mar; 6(2):e01628. PubMed ID: 25759504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of methionine by Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Pelka H; Schulman LH; Brunie S
    Biochemistry; 1991 Oct; 30(40):9569-75. PubMed ID: 1911742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 2.0 A crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules.
    Sugiura I; Nureki O; Ugaji-Yoshikawa Y; Kuwabara S; Shimada A; Tateno M; Lorber B; Giegé R; Moras D; Yokoyama S; Konno M
    Structure; 2000 Feb; 8(2):197-208. PubMed ID: 10673435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.