These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
565 related articles for article (PubMed ID: 19837194)
21. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities. Hofmann MP; Mohammed AR; Perrie Y; Gbureck U; Barralet JE Acta Biomater; 2009 Jan; 5(1):43-9. PubMed ID: 18799378 [TBL] [Abstract][Full Text] [Related]
22. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies. Xu M; Zhai D; Chang J; Wu C Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000 [TBL] [Abstract][Full Text] [Related]
23. Blooming gelatin: an individual additive for enhancing nanoapatite precipitation, physical properties, and osteoblastic responses of nanostructured macroporous calcium phosphate bone cements. Orshesh Z; Hesaraki S; Khanlarkhani A Int J Nanomedicine; 2017; 12():745-758. PubMed ID: 28176961 [TBL] [Abstract][Full Text] [Related]
24. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material. Cao X; Lu H; Liu J; Lu W; Guo L; Ma M; Zhang B; Guo Y J Mater Sci Mater Med; 2019 Jul; 30(8):88. PubMed ID: 31325082 [TBL] [Abstract][Full Text] [Related]
25. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
26. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
27. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Wu F; Wei J; Guo H; Chen F; Hong H; Liu C Acta Biomater; 2008 Nov; 4(6):1873-84. PubMed ID: 18662897 [TBL] [Abstract][Full Text] [Related]
28. Gold is for the mistress, silver for the maid: Enhanced mechanical properties, osteoinduction and antibacterial activity due to iron doping of tricalcium phosphate bone cements. Uskoković V; Graziani V; Wu VM; Fadeeva IV; Fomin AS; Presniakov IA; Fosca M; Ortenzi M; Caminiti R; Rau JV Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():798-810. PubMed ID: 30423766 [TBL] [Abstract][Full Text] [Related]
29. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Kumta PN; Sfeir C; Lee DH; Olton D; Choi D Acta Biomater; 2005 Jan; 1(1):65-83. PubMed ID: 16701781 [TBL] [Abstract][Full Text] [Related]
30. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203 [TBL] [Abstract][Full Text] [Related]
31. Preparation of calcium aluminate cement for hard tissue repair: effects of lithium fluoride and maleic acid on setting behavior, compressive strength, and biocompatibility. Oh SH; Choi SY; Lee YK; Kim KN J Biomed Mater Res; 2002 Dec; 62(4):593-9. PubMed ID: 12221708 [TBL] [Abstract][Full Text] [Related]
32. Cu Schamel M; Bernhardt A; Quade M; Würkner C; Gbureck U; Moseke C; Gelinsky M; Lode A Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():99-110. PubMed ID: 28183678 [TBL] [Abstract][Full Text] [Related]
33. Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility. Liu W; Zhai D; Huan Z; Wu C; Chang J Acta Biomater; 2015 Jul; 21():217-27. PubMed ID: 25890099 [TBL] [Abstract][Full Text] [Related]
34. Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement. Barralet JE; Grover LM; Gbureck U Biomaterials; 2004 May; 25(11):2197-203. PubMed ID: 14741635 [TBL] [Abstract][Full Text] [Related]
35. Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications. Yang G; Liu J; Li F; Pan Z; Ni X; Shen Y; Xu H; Huang Q Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():70-6. PubMed ID: 24411353 [TBL] [Abstract][Full Text] [Related]
36. Fiber-enriched double-setting calcium phosphate bone cement. dos Santos LA; Carrodéguas RG; Boschi AO; Fonseca de Arruda AC J Biomed Mater Res A; 2003 May; 65(2):244-50. PubMed ID: 12734819 [TBL] [Abstract][Full Text] [Related]
37. Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: characterization and cell response. Mestres G; Le Van C; Ginebra MP Acta Biomater; 2012 Mar; 8(3):1169-79. PubMed ID: 22154863 [TBL] [Abstract][Full Text] [Related]
38. The constitution, physical properties and biocompatibility of modified accelerated cement. Camilleri J; Montesin FE; Juszczyk AS; Papaioannou S; Curtis RV; Donald FM; Ford TR Dent Mater; 2008 Mar; 24(3):341-50. PubMed ID: 17659330 [TBL] [Abstract][Full Text] [Related]
39. Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications. Boroujeni NM; Zhou H; Luchini TJ; Bhaduri SB Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4323-30. PubMed ID: 23910349 [TBL] [Abstract][Full Text] [Related]
40. Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements. Huan Z; Chang J Acta Biomater; 2007 Nov; 3(6):952-60. PubMed ID: 17588507 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]