These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19837655)

  • 1. Varying-coefficient models for longitudinal processes with continuous-time informative dropout.
    Su L; Hogan JW
    Biostatistics; 2010 Jan; 11(1):93-110. PubMed ID: 19837655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A marginalized conditional linear model for longitudinal binary data when informative dropout occurs in continuous time.
    Su L
    Biostatistics; 2012 Apr; 13(2):355-68. PubMed ID: 22133756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixtures of varying coefficient models for longitudinal data with discrete or continuous nonignorable dropout.
    Hogan JW; Lin X; Herman B
    Biometrics; 2004 Dec; 60(4):854-64. PubMed ID: 15606405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal quantile regression in the presence of informative dropout through longitudinal-survival joint modeling.
    Farcomeni A; Viviani S
    Stat Med; 2015 Mar; 34(7):1199-213. PubMed ID: 25488110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A shared-parameter continuous-time hidden Markov and survival model for longitudinal data with informative dropout.
    Bartolucci F; Farcomeni A
    Stat Med; 2019 Mar; 38(6):1056-1073. PubMed ID: 30324662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches.
    Chan JS
    Biom J; 2016 May; 58(3):549-69. PubMed ID: 26467236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling longitudinal data with nonignorable dropouts using a latent dropout class model.
    Roy J
    Biometrics; 2003 Dec; 59(4):829-36. PubMed ID: 14969461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sensitivity analysis approach for informative dropout using shared parameter models.
    Su L; Li Q; Barrett JK; Daniels MJ
    Biometrics; 2019 Sep; 75(3):917-926. PubMed ID: 30666621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general class of pattern mixture models for nonignorable dropout with many possible dropout times.
    Roy J; Daniels MJ
    Biometrics; 2008 Jun; 64(2):538-45. PubMed ID: 17900312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shared parameter and copula models for analysis of semicontinuous longitudinal data with nonrandom dropout and informative censoring.
    Jaffa MA; Gebregziabher M; Jaffa AA
    Stat Methods Med Res; 2022 Mar; 31(3):451-474. PubMed ID: 34806502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A varying-coefficient method for analyzing longitudinal clinical trials data with nonignorable dropout.
    Forster JE; MaWhinney S; Ball EL; Fairclough D
    Contemp Clin Trials; 2012 Mar; 33(2):378-85. PubMed ID: 22101223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian natural cubic B-spline varying coefficient method for non-ignorable dropout.
    Moore CM; MaWhinney S; Carlson NE; Kreidler S
    BMC Med Res Methodol; 2020 Oct; 20(1):250. PubMed ID: 33028226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled pattern imputation for sensitivity analysis of longitudinal binary and ordinal outcomes with nonignorable dropout.
    Tang Y
    Stat Med; 2018 Apr; 37(9):1467-1481. PubMed ID: 29333672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint modeling of longitudinal data and informative dropout time in the presence of multiple changepoints.
    Ghosh P; Ghosh K; Tiwari RC
    Stat Med; 2011 Mar; 30(6):611-26. PubMed ID: 21337357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new Bayesian joint model for longitudinal count data with many zeros, intermittent missingness, and dropout with applications to HIV prevention trials.
    Wu J; Chen MH; Schifano ED; Ibrahim JG; Fisher JD
    Stat Med; 2019 Dec; 38(30):5565-5586. PubMed ID: 31691322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accounting for dropout reason in longitudinal studies with nonignorable dropout.
    Moore CM; MaWhinney S; Forster JE; Carlson NE; Allshouse A; Wang X; Routy JP; Conway B; Connick E
    Stat Methods Med Res; 2017 Aug; 26(4):1854-1866. PubMed ID: 26078357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A joint model for longitudinal and survival data based on an AR(1) latent process.
    Bacci S; Bartolucci F; Pandolfi S
    Stat Methods Med Res; 2018 May; 27(5):1285-1311. PubMed ID: 27587589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian analysis of joint quantile regression for multi-response longitudinal data with application to primary biliary cirrhosis sequential cohort study.
    Tian YZ; Tang ML; Wong C; Tian MZ
    Stat Methods Med Res; 2024 Jul; 33(7):1163-1184. PubMed ID: 38676359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Missing covariates in longitudinal data with informative dropouts: bias analysis and inference.
    Roy J; Lin X
    Biometrics; 2005 Sep; 61(3):837-46. PubMed ID: 16135036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random changepoint modelling of HIV immunologic responses.
    Ghosh P; Vaida F
    Stat Med; 2007 Apr; 26(9):2074-87. PubMed ID: 16969894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.