These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 19837704)

  • 41. Dynamic accounting of greenhouse gas emissions from cascading utilisation of wood waste.
    Faraca G; Tonini D; Astrup TF
    Sci Total Environ; 2019 Feb; 651(Pt 2):2689-2700. PubMed ID: 30463124
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessing the global warming potential of wooden products from the furniture sector to improve their ecodesign.
    González-García S; Gasol CM; Lozano RG; Moreira MT; Gabarrell X; Rieradevall i Pons J; Feijoo G
    Sci Total Environ; 2011 Dec; 410-411():16-25. PubMed ID: 22000917
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pomace waste management scenarios in Québec--impact on greenhouse gas emissions.
    Gassara F; Brar SK; Pelletier F; Verma M; Godbout S; Tyagi RD
    J Hazard Mater; 2011 Sep; 192(3):1178-85. PubMed ID: 21733627
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potential of municipal solid waste for renewable energy production and reduction of greenhouse gas emissions in South Korea.
    Ryu C
    J Air Waste Manag Assoc; 2010 Feb; 60(2):176-83. PubMed ID: 20222530
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calculator tool for determining greenhouse gas emissions for biosolids processing and end use.
    Brown S; Beecher N; Carpenter A
    Environ Sci Technol; 2010 Dec; 44(24):9509-15. PubMed ID: 21080649
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany.
    Helftewes M; Flamme S; Nelles M
    Waste Manag Res; 2012 Apr; 30(4):421-31. PubMed ID: 22452957
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
    Vainikka P; Tsupari E; Sipilä K; Hupa M
    Waste Manag; 2012 Mar; 32(3):426-37. PubMed ID: 22079250
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities.
    Friedrich E; Trois C
    Waste Manag; 2013 Nov; 33(11):2520-31. PubMed ID: 23791423
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Possibilities and limitations of life cycle assessment (LCA) in the development of waste utilization systems - Applied examples for a region in Northern Germany.
    Wittmaier M; Langer S; Sawilla B
    Waste Manag; 2009 May; 29(5):1732-8. PubMed ID: 19144506
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Contribution of individual waste fractions to the environmental impacts from landfilling of municipal solid waste.
    Manfredi S; Tonini D; Christensen TH
    Waste Manag; 2010 Mar; 30(3):433-40. PubMed ID: 19854039
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantification of greenhouse gas emissions from waste management processes for municipalities--a comparative review focusing on Africa.
    Friedrich E; Trois C
    Waste Manag; 2011 Jul; 31(7):1585-96. PubMed ID: 21450453
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland.
    Kolasa-Wiecek A
    J Environ Sci (China); 2015 Apr; 30():47-54. PubMed ID: 25872708
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deforestation and greenhouse gas emissions associated with fuelwood consumption of the brick making industry in Sudan.
    Alam SA; Starr M
    Sci Total Environ; 2009 Jan; 407(2):847-52. PubMed ID: 18992919
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Climate impact analysis of waste treatment scenarios--thermal treatment of commercial and pretreated waste versus landfilling in Austria.
    Ragossnig AM; Wartha C; Pomberger R
    Waste Manag Res; 2009 Nov; 27(9):914-21. PubMed ID: 19748941
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of waste management with regard to climate protection: a case study.
    Hackl A; Mauschitz G
    Waste Manag Res; 2008 Feb; 26(1):5-10. PubMed ID: 18338698
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identifying improvement potentials in cement production with life cycle assessment.
    Boesch ME; Hellweg S
    Environ Sci Technol; 2010 Dec; 44(23):9143-9. PubMed ID: 21047057
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley.
    Battini F; Agostini A; Boulamanti AK; Giuntoli J; Amaducci S
    Sci Total Environ; 2014 May; 481():196-208. PubMed ID: 24598150
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential.
    Roberts KG; Gloy BA; Joseph S; Scott NR; Lehmann J
    Environ Sci Technol; 2010 Jan; 44(2):827-33. PubMed ID: 20030368
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil.
    Costa Junior C; Cerri CE; Pires AV; Cerri CC
    Sci Total Environ; 2015 Feb; 505():1018-25. PubMed ID: 25461102
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.
    Röder M; Thornley P
    Waste Manag; 2018 Apr; 74():241-252. PubMed ID: 29203077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.