These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 19837719)

  • 1. INTERSNP: genome-wide interaction analysis guided by a priori information.
    Herold C; Steffens M; Brockschmidt FF; Baur MP; Becker T
    Bioinformatics; 2009 Dec; 25(24):3275-81. PubMed ID: 19837719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance levels in genome-wide interaction analysis (GWIA).
    Becker T; Herold C; Meesters C; Mattheisen M; Baur MP
    Ann Hum Genet; 2011 Jan; 75(1):29-35. PubMed ID: 20950400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasible and successful: genome-wide interaction analysis involving all 1.9 x 10(11) pair-wise interaction tests.
    Steffens M; Becker T; Sander T; Fimmers R; Herold C; Holler DA; Leu C; Herms S; Cichon S; Bohn B; Gerstner T; Griebel M; Nöthen MM; Wienker TF; Baur MP
    Hum Hered; 2010; 69(4):268-84. PubMed ID: 20357478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GSEA-SNP: applying gene set enrichment analysis to SNP data from genome-wide association studies.
    Holden M; Deng S; Wojnowski L; Kulle B
    Bioinformatics; 2008 Dec; 24(23):2784-5. PubMed ID: 18854360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated genome-wide pathway association analysis with INTERSNP.
    Herold C; Mattheisen M; Lacour A; Vaitsiakhovich T; Angisch M; Drichel D; Becker T
    Hum Hered; 2012; 73(2):63-72. PubMed ID: 22399020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources.
    Karchin R; Diekhans M; Kelly L; Thomas DJ; Pieper U; Eswar N; Haussler D; Sali A
    Bioinformatics; 2005 Jun; 21(12):2814-20. PubMed ID: 15827081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNP mining porcine ESTs with MAVIANT, a novel tool for SNP evaluation and annotation.
    Panitz F; Stengaard H; Hornshøj H; Gorodkin J; Hedegaard J; Cirera S; Thomsen B; Madsen LB; Høj A; Vingborg RK; Zahn B; Wang X; Wang X; Wernersson R; Jørgensen CB; Scheibye-Knudsen K; Arvin T; Lumholdt S; Sawera M; Green T; Nielsen BJ; Havgaard JH; Brunak S; Fredholm M; Bendixen C
    Bioinformatics; 2007 Jul; 23(13):i387-91. PubMed ID: 17646321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using genome-wide pathway analysis to unravel the etiology of complex diseases.
    Elbers CC; van Eijk KR; Franke L; Mulder F; van der Schouw YT; Wijmenga C; Onland-Moret NC
    Genet Epidemiol; 2009 Jul; 33(5):419-31. PubMed ID: 19235186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ACCUSA--accurate SNP calling on draft genomes.
    Fröhler S; Dieterich C
    Bioinformatics; 2010 May; 26(10):1364-5. PubMed ID: 20363730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Singleton SNPs in the human genome and implications for genome-wide association studies.
    Ke X; Taylor MS; Cardon LR
    Eur J Hum Genet; 2008 Apr; 16(4):506-15. PubMed ID: 18197193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ProbABEL package for genome-wide association analysis of imputed data.
    Aulchenko YS; Struchalin MV; van Duijn CM
    BMC Bioinformatics; 2010 Mar; 11():134. PubMed ID: 20233392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of potential power gain with imputed genotypes in genome-wide association studies.
    Becker T; Flaquer A; Brockschmidt FF; Herold C; Steffens M
    Hum Hered; 2009; 68(1):23-34. PubMed ID: 19339783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. METU-SNP: an integrated software system for SNP-complex disease association analysis.
    Ustünkar G; Aydın Son Y
    J Integr Bioinform; 2011 Dec; 8(1):187. PubMed ID: 22156365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing gene length biases in gene set analysis of Genome-Wide Association Studies.
    Jia P; Tian J; Zhao Z
    Int J Comput Biol Drug Des; 2010; 3(4):297-310. PubMed ID: 21297229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput identification, database storage and analysis of SNPs in EST sequences.
    Useche FJ; Gao G; Harafey M; Rafalski A
    Genome Inform; 2001; 12():194-203. PubMed ID: 11791238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GENOMIZER: an integrated analysis system for genome-wide association data.
    Franke A; Wollstein A; Teuber M; Wittig M; Lu T; Hoffmann K; Nürnberg P; Krawczak M; Schreiber S; Hampe J
    Hum Mutat; 2006 Jun; 27(6):583-8. PubMed ID: 16652332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian variable and model selection methods for genetic association studies.
    Fridley BL
    Genet Epidemiol; 2009 Jan; 33(1):27-37. PubMed ID: 18618760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive rule inference for epistatic interaction detection in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating domain knowledge with statistical and data mining methods for high-density genomic SNP disease association analysis.
    Dinu V; Zhao H; Miller PL
    J Biomed Inform; 2007 Dec; 40(6):750-60. PubMed ID: 17625973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.