BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19838116)

  • 1. Using evoked compound action potentials to assess activation of electrodes and predict C-levels in the Tempo+ cochlear implant speech processor.
    Alvarez I; de la Torre A; Sainz M; Roldán C; Schoesser H; Spitzer P
    Ear Hear; 2010 Feb; 31(1):134-45. PubMed ID: 19838116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Experiences in Kiel with the cochlear implant].
    Müller-Deile J; Schmidt BJ; Rudert H
    Laryngorhinootologie; 1994 Jun; 73(6):300-10. PubMed ID: 8060448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Correlation between electrically-induced stapedius reflex and discomfort threshold in cochlear implant patients].
    Gattaz G; Battmer RD; Lehnhardt E; Gnadeberg D
    HNO; 1992 Dec; 40(12):480-3. PubMed ID: 1493968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracochlear sixteen-channel electrode system.
    Banfai P; Karczag A; Kubik S; Lüers P; Sürth W
    Otolaryngol Clin North Am; 1986 May; 19(2):371-408. PubMed ID: 3754953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ART and AutoART ECAP measurements and cochlear nerve anatomy as predictors in adult cochlear implant recipients.
    Schrank L; Nachtigäller P; Müller J; Hempel JM; Canis M; Spiegel JL; Rader T
    Eur Arch Otorhinolaryngol; 2024 Jul; 281(7):3461-3473. PubMed ID: 38219245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users.
    Scheperle RA; Abbas PJ
    Ear Hear; 2015; 36(4):441-53. PubMed ID: 25658746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Neural Response Telemetry to Monitor Physiological Responses to Acoustic Stimulation in Hybrid Cochlear Implant Users.
    Abbas PJ; Tejani VD; Scheperle RA; Brown CJ
    Ear Hear; 2017; 38(4):409-425. PubMed ID: 28085738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of anesthesia on the intraoperative elicited stapedius reflex].
    Gnadeberg D; Battmer RD; Lüllwitz E; Laszig R; Dybus U; Lenarz T
    Laryngorhinootologie; 1994 Mar; 73(3):132-5. PubMed ID: 8172632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Cochlear Implant Fitting by Machine Learning Techniques.
    Koyama H; Kashio A; Yamasoba T
    Otol Neurotol; 2024 Jul; 45(6):643-650. PubMed ID: 38769101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral and Central Contributions to Cortical Responses in Cochlear Implant Users.
    Scheperle RA; Abbas PJ
    Ear Hear; 2015; 36(4):430-40. PubMed ID: 25658747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Prognostic indications within the scope of the selection of cochlear implant patients].
    Burian K; Klasek O
    Laryngorhinootologie; 1989 Apr; 68(4):221-4. PubMed ID: 2742645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experience with the cochlear miniature speech processor in adults and children together with a comparison of unipolar and bipolar modes.
    Lehnhardt E; Gnadeberg D; Battmer RD; von Wallenberg E
    ORL J Otorhinolaryngol Relat Spec; 1992; 54(6):308-13. PubMed ID: 1475100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraoperative and postoperative electrically evoked auditory brain stem responses in nucleus cochlear implant users: implications for the fitting process.
    Brown CJ; Abbas PJ; Fryauf-Bertschy H; Kelsay D; Gantz BJ
    Ear Hear; 1994 Apr; 15(2):168-76. PubMed ID: 8020649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Loudness scaling in cochlear implant patients within the scope of preoperative evaluation].
    Müller J; Schön F
    Laryngorhinootologie; 1994 Mar; 73(3):128-31. PubMed ID: 8172631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships Between the Auditory Nerve's Ability to Recover From Neural Adaptation, Cortical Encoding of and Perceptual Sensitivity to Within-channel Temporal Gaps in Postlingually Deafened Adult Cochlear Implant Users.
    He S; Yuan Y; Skidmore J
    Ear Hear; 2023 Sep-Oct 01; 44(5):1202-1211. PubMed ID: 37018083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Electrode Location on Estimates of Neural Health in Humans with Cochlear Implants.
    Schvartz-Leyzac KC; Holden TA; Zwolan TA; Arts HA; Firszt JB; Buswinka CJ; Pfingst BE
    J Assoc Res Otolaryngol; 2020 Jun; 21(3):259-275. PubMed ID: 32342256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EABRs and surface potentials with a transcutaneous multielectrode cochlear implant.
    Gallégo S; Truy E; Morgon A; Collet L
    Acta Otolaryngol; 1997 Mar; 117(2):164-8. PubMed ID: 9105440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically evoked auditory middle latency responses versus perception abilities in cochlear implant users.
    Groenen P; Snik A; van den Broek P
    Audiology; 1997; 36(2):83-97. PubMed ID: 9099406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing the efficiency of ECAP measurements due to interpolation.
    Dambon J; Munder P; Mewes A; Böhnke B; Beyer A; Kolonko J; Brademann G; Hey M
    Acta Otolaryngol; 2023; 143(11-12):971-978. PubMed ID: 38189322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically evoked brainstem potentials in cochlear implant patients with multi-electrode stimulation.
    Abbas PJ; Brown CJ
    Hear Res; 1988 Nov; 36(2-3):153-62. PubMed ID: 3209488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.