BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 19838194)

  • 41. CRLF2 overexpression results in reduced B-cell differentiation and upregulated E2F signaling in the Dp16 mouse model of Down syndrome.
    Junco JJ; Zorman B; Gant VU; Muñoz J; Lacorazza HD; Sumazin P; Rabin KR
    Exp Hematol; 2022 Jun; 110():34-38. PubMed ID: 35306048
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Correlation of the surface expression of thymic stromal lymphopoietin receptor with the presence of CRLF2 gene rearrangements in children with B-lineage acute lymphoblastic leukemia.
    Demina I; Zerkalenkova E; Soldatkina O; Kazakova A; Semchenkova A; Goncharova M; Novichkova G; Maschan M; Karachunskiy A; Olshanskaya Y; Popov A
    Int J Lab Hematol; 2023 Jun; 45(3):337-343. PubMed ID: 36748719
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GATA3 germline variant is associated with CRLF2 expression and predicts outcome in pediatric B-cell precursor acute lymphoblastic leukemia.
    Madzio J; Pastorczak A; Sedek L; Braun M; Taha J; Wypyszczak K; Trelinska J; Lejman M; Muszynska-Roslan K; Tomasik B; Derwich K; Koltan A; Kazanowska B; Irga-Jaworska N; Badowska W; Matysiak M; Kowalczyk J; Styczynski J; Fendler W; Szczepanski T; Mlynarski W
    Genes Chromosomes Cancer; 2019 Sep; 58(9):619-626. PubMed ID: 30859636
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Precision medicine approaches may be the future for CRLF2 rearranged Down Syndrome Acute Lymphoblastic Leukaemia patients.
    Page EC; Heatley SL; Yeung DT; Thomas PQ; White DL
    Cancer Lett; 2018 Sep; 432():69-74. PubMed ID: 29879498
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hematological characteristics, cytogenetic features, and post-induction measurable residual disease in thymic stromal lymphopoietin receptor (TSLPR) overexpressed B-cell acute lymphoblastic leukemia in an Indian cohort.
    Virk H; Rana S; Sharma P; Bose PL; Yadav DD; Sachdeva MUS; Varma N; Trehan A; Lad D; Khadwal AR; Malhotra P; Sreedharanunni S
    Ann Hematol; 2021 Aug; 100(8):2031-2041. PubMed ID: 34159401
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genomic and transcriptional landscape of P2RY8-CRLF2-positive childhood acute lymphoblastic leukemia.
    Vesely C; Frech C; Eckert C; Cario G; Mecklenbräuker A; Zur Stadt U; Nebral K; Kraler F; Fischer S; Attarbaschi A; Schuster M; Bock C; Cavé H; von Stackelberg A; Schrappe M; Horstmann MA; Mann G; Haas OA; Panzer-Grümayer R
    Leukemia; 2017 Jul; 31(7):1491-1501. PubMed ID: 27899802
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gain of chromosome 21 increases the propensity for
    Page EC; Heatley SL; Rehn J; Thomas PQ; Yeung DT; White DL
    Front Oncol; 2023; 13():1177871. PubMed ID: 37483494
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Down syndrome and acute lymphoblastic leukemia].
    Okamoto Y
    Rinsho Ketsueki; 2021; 62(10):1465-1473. PubMed ID: 34732618
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis.
    Herold T; Schneider S; Metzeler KH; Neumann M; Hartmann L; Roberts KG; Konstandin NP; Greif PA; Bräundl K; Ksienzyk B; Huk N; Schneider I; Zellmeier E; Jurinovic V; Mansmann U; Hiddemann W; Mullighan CG; Bohlander SK; Spiekermann K; Hoelzer D; Brüggemann M; Baldus CD; Dreyling M; Gökbuget N
    Haematologica; 2017 Jan; 102(1):130-138. PubMed ID: 27561722
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Targeting signaling pathways in acute lymphoblastic leukemia: new insights.
    Harrison CJ
    Hematology Am Soc Hematol Educ Program; 2013; 2013():118-25. PubMed ID: 24319172
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Understanding the biology of CRLF2-overexpressing acute lymphoblastic leukemia.
    Tasian SK; Loh ML
    Crit Rev Oncog; 2011; 16(1-2):13-24. PubMed ID: 22150304
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Clinical, biological, and outcome features of P2RY8-CRLF2 and CRLF2 over-expression in pediatric B-cell precursor acute lymphoblastic leukemia according to the CCLG-ALL 2008 and 2018 protocol.
    Wang Y; Li J; Xue TL; Tian S; Yue ZX; Liu SG; Gao C
    Eur J Haematol; 2023 Jun; 110(6):669-679. PubMed ID: 36814093
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia.
    Tasian SK; Doral MY; Borowitz MJ; Wood BL; Chen IM; Harvey RC; Gastier-Foster JM; Willman CL; Hunger SP; Mullighan CG; Loh ML
    Blood; 2012 Jul; 120(4):833-42. PubMed ID: 22685175
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CRLF2 rearrangement in Ph-like acute lymphoblastic leukemia predicts relative glucocorticoid resistance that is overcome with MEK or Akt inhibition.
    Meyer LK; Delgado-Martin C; Maude SL; Shannon KM; Teachey DT; Hermiston ML
    PLoS One; 2019; 14(7):e0220026. PubMed ID: 31318944
    [TBL] [Abstract][Full Text] [Related]  

  • 55. IGH@ translocations, CRLF2 deregulation, and microdeletions in adolescents and adults with acute lymphoblastic leukemia.
    Moorman AV; Schwab C; Ensor HM; Russell LJ; Morrison H; Jones L; Masic D; Patel B; Rowe JM; Tallman M; Goldstone AH; Fielding AK; Harrison CJ
    J Clin Oncol; 2012 Sep; 30(25):3100-8. PubMed ID: 22851563
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children's Oncology Group study.
    Chen IM; Harvey RC; Mullighan CG; Gastier-Foster J; Wharton W; Kang H; Borowitz MJ; Camitta BM; Carroll AJ; Devidas M; Pullen DJ; Payne-Turner D; Tasian SK; Reshmi S; Cottrell CE; Reaman GH; Bowman WP; Carroll WL; Loh ML; Winick NJ; Hunger SP; Willman CL
    Blood; 2012 Apr; 119(15):3512-22. PubMed ID: 22368272
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia.
    Roberts KG; Morin RD; Zhang J; Hirst M; Zhao Y; Su X; Chen SC; Payne-Turner D; Churchman ML; Harvey RC; Chen X; Kasap C; Yan C; Becksfort J; Finney RP; Teachey DT; Maude SL; Tse K; Moore R; Jones S; Mungall K; Birol I; Edmonson MN; Hu Y; Buetow KE; Chen IM; Carroll WL; Wei L; Ma J; Kleppe M; Levine RL; Garcia-Manero G; Larsen E; Shah NP; Devidas M; Reaman G; Smith M; Paugh SW; Evans WE; Grupp SA; Jeha S; Pui CH; Gerhard DS; Downing JR; Willman CL; Loh M; Hunger SP; Marra MA; Mullighan CG
    Cancer Cell; 2012 Aug; 22(2):153-66. PubMed ID: 22897847
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of CRLF2 Expression in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia.
    Rasekh EO; Atef AM; Khalil M; Ebeid E; Madney Y; Hamdy N
    Clin Lab; 2021 Jan; 67(1):. PubMed ID: 33491417
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Targeting TSLP-Induced Tyrosine Kinase Signaling Pathways in
    Sia KCS; Zhong L; Mayoh C; Norris MD; Haber M; Marshall GM; Raftery MJ; Lock RB
    Mol Cancer Res; 2020 Dec; 18(12):1767-1776. PubMed ID: 32801162
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel xenograft model to study the role of TSLP-induced CRLF2 signals in normal and malignant human B lymphopoiesis.
    Francis OL; Milford TA; Martinez SR; Baez I; Coats JS; Mayagoitia K; Concepcion KR; Ginelli E; Beldiman C; Benitez A; Weldon AJ; Arogyaswamy K; Shiraz P; Fisher R; Morris CL; Zhang XB; Filippov V; Van Handel B; Ge Z; Song C; Dovat S; Su RJ; Payne KJ
    Haematologica; 2016 Apr; 101(4):417-26. PubMed ID: 26611474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.