BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 19838418)

  • 1. Amperometric assessment of functional changes in nanoparticle-exposed immune cells: varying Au nanoparticle exposure time and concentration.
    Marquis BJ; Maurer-Jones MA; Braun KL; Haynes CL
    Analyst; 2009 Nov; 134(11):2293-300. PubMed ID: 19838418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional assessment of metal oxide nanoparticle toxicity in immune cells.
    Maurer-Jones MA; Lin YS; Haynes CL
    ACS Nano; 2010 Jun; 4(6):3363-73. PubMed ID: 20481555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of noble metal nanoparticle ζ-potential effects on single-cell exocytosis function in vitro with carbon-fiber microelectrode amperometry.
    Marquis BJ; Liu Z; Braun KL; Haynes CL
    Analyst; 2011 Sep; 136(17):3478-86. PubMed ID: 21170444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic measurement of altered chemical messenger secretion after cellular uptake of nanoparticles using carbon-fiber microelectrode amperometry.
    Marquis BJ; McFarland AD; Braun KL; Haynes CL
    Anal Chem; 2008 May; 80(9):3431-7. PubMed ID: 18341358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of co-culture of fibroblasts on mast cell exocytotic release characteristics as evaluated by carbon-fiber microelectrode amperometry.
    Marquis BJ; Haynes CL
    Biophys Chem; 2008 Sep; 137(1):63-9. PubMed ID: 18653272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions.
    Love SA; Haynes CL
    Anal Bioanal Chem; 2010 Sep; 398(2):677-88. PubMed ID: 20428848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line.
    Kühnel D; Busch W; Meissner T; Springer A; Potthoff A; Richter V; Gelinsky M; Scholz S; Schirmer K
    Aquat Toxicol; 2009 Jun; 93(2-3):91-9. PubMed ID: 19439373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles.
    Jin H; Heller DA; Sharma R; Strano MS
    ACS Nano; 2009 Jan; 3(1):149-58. PubMed ID: 19206261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantal release of serotonin from platelets.
    Ge S; White JG; Haynes CL
    Anal Chem; 2009 Apr; 81(8):2935-43. PubMed ID: 19364141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells.
    Wang F; Gao F; Lan M; Yuan H; Huang Y; Liu J
    Toxicol In Vitro; 2009 Aug; 23(5):808-15. PubMed ID: 19401228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NTP technical report on the toxicity studies of Dibutyl Phthalate (CAS No. 84-74-2) Administered in Feed to F344/N Rats and B6C3F1 Mice.
    Marsman D
    Toxic Rep Ser; 1995 Apr; 30():1-G5. PubMed ID: 12209194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system.
    Skebo JE; Grabinski CM; Schrand AM; Schlager JJ; Hussain SM
    Int J Toxicol; 2007; 26(2):135-41. PubMed ID: 17454253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining changes in cellular communication in neuroendocrine cells after noble metal nanoparticle exposure.
    Love SA; Liu Z; Haynes CL
    Analyst; 2012 Jul; 137(13):3004-10. PubMed ID: 22382603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis.
    Qaddoumi MG; Gukasyan HJ; Davda J; Labhasetwar V; Kim KJ; Lee VH
    Mol Vis; 2003 Oct; 9():559-68. PubMed ID: 14566223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant-polymer nanoparticles overcome P-glycoprotein-mediated drug efflux.
    Chavanpatil MD; Khdair A; Gerard B; Bachmeier C; Miller DW; Shekhar MP; Panyam J
    Mol Pharm; 2007; 4(5):730-8. PubMed ID: 17705442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.
    Carlson C; Hussain SM; Schrand AM; Braydich-Stolle LK; Hess KL; Jones RL; Schlager JJ
    J Phys Chem B; 2008 Oct; 112(43):13608-19. PubMed ID: 18831567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of fetal exposure to carbon nanoparticles on reproductive function in male offspring.
    Yoshida S; Hiyoshi K; Oshio S; Takano H; Takeda K; Ichinose T
    Fertil Steril; 2010 Mar; 93(5):1695-9. PubMed ID: 19446808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level.
    Xu W; Kong JS; Chen P
    Phys Chem Chem Phys; 2009 Apr; 11(15):2767-78. PubMed ID: 19421535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of microemulsion variables on copper oxide nanoparticle uptake by AOT microemulsions.
    Nassar NN; Husein MM
    J Colloid Interface Sci; 2007 Dec; 316(2):442-50. PubMed ID: 17889890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes.
    Farkas J; Christian P; Urrea JA; Roos N; Hassellöv M; Tollefsen KE; Thomas KV
    Aquat Toxicol; 2010 Jan; 96(1):44-52. PubMed ID: 19853932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.