These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 19839648)

  • 1. Kinetic characterization of xenobiotic reductase A from Pseudomonas putida 86.
    Spiegelhauer O; Dickert F; Mende S; Niks D; Hille R; Ullmann M; Dobbek H
    Biochemistry; 2009 Dec; 48(48):11412-20. PubMed ID: 19839648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine as a modulator residue in the active site of xenobiotic reductase A: a structural, thermodynamic and kinetic study.
    Spiegelhauer O; Mende S; Dickert F; Knauer SH; Ullmann GM; Dobbek H
    J Mol Biol; 2010 Apr; 398(1):66-82. PubMed ID: 20206186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determinants of substrate binding and protonation in the flavoenzyme xenobiotic reductase A.
    Spiegelhauer O; Werther T; Mende S; Knauer SH; Dobbek H
    J Mol Biol; 2010 Oct; 403(2):286-98. PubMed ID: 20826164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xenobiotic reductase A in the degradation of quinoline by Pseudomonas putida 86: physiological function, structure and mechanism of 8-hydroxycoumarin reduction.
    Griese JJ; P Jakob R; Schwarzinger S; Dobbek H
    J Mol Biol; 2006 Aug; 361(1):140-52. PubMed ID: 16822524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductive and oxidative half-reactions of morphinone reductase from Pseudomonas putida M10: a kinetic and thermodynamic analysis.
    Craig DH; Moody PC; Bruce NC; Scrutton NS
    Biochemistry; 1998 May; 37(20):7598-607. PubMed ID: 9585575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex.
    Lee HJ; Basran J; Scrutton NS
    Biochemistry; 1998 Nov; 37(44):15513-22. PubMed ID: 9799514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trihydroxynaphthalene reductase from Magnaporthe grisea: realization of an active center inhibitor and elucidation of the kinetic mechanism.
    Thompson JE; Basarab GS; Andersson A; Lindqvist Y; Jordan DB
    Biochemistry; 1997 Feb; 36(7):1852-60. PubMed ID: 9048570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and structural basis of reactivity of pentaerythritol tetranitrate reductase with NADPH, 2-cyclohexenone, nitroesters, and nitroaromatic explosives.
    Khan H; Harris RJ; Barna T; Craig DH; Bruce NC; Munro AW; Moody PC; Scrutton NS
    J Biol Chem; 2002 Jun; 277(24):21906-12. PubMed ID: 11923299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the His57-Glu214 ionic couple located in the active site of Mycobacterium tuberculosis FprA.
    Pennati A; Razeto A; de Rosa M; Pandini V; Vanoni MA; Mattevi A; Coda A; Aliverti A; Zanetti G
    Biochemistry; 2006 Jul; 45(29):8712-20. PubMed ID: 16846214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transient intermediate in the reaction catalyzed by (S)-mandelate dehydrogenase from Pseudomonas putida.
    Dewanti AR; Mitra B
    Biochemistry; 2003 Nov; 42(44):12893-901. PubMed ID: 14596603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo interactions of ferredoxin-NADP+ reductases in Pseudomonas putida.
    Yeom J; Jeon CO; Madsen EL; Park W
    J Biochem; 2009 Apr; 145(4):481-91. PubMed ID: 19122206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and characterization of a functional canine variant of cytochrome b5 reductase.
    Roma GW; Crowley LJ; Barber MJ
    Arch Biochem Biophys; 2006 Aug; 452(1):69-82. PubMed ID: 16814740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery and characterization of a Coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles.
    Harris DR; Ward DE; Feasel JM; Lancaster KM; Murphy RD; Mallet TC; Crane EJ
    FEBS J; 2005 Mar; 272(5):1189-200. PubMed ID: 15720393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of salt and pH on the reductive half-reaction of Mycobacterium tuberculosis FprA with NADPH.
    Pennati A; Zanetti G; Aliverti A; Gadda G
    Biochemistry; 2008 Mar; 47(11):3418-25. PubMed ID: 18293930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selectivity through discriminatory induced fit enables switching of NAD(P)H coenzyme specificity in Old Yellow Enzyme ene-reductases.
    Iorgu AI; Hedison TM; Hay S; Scrutton NS
    FEBS J; 2019 Aug; 286(16):3117-3128. PubMed ID: 31033202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase. Structure of the reduced enzyme-progesterone complex and the roles of residues Tyr186, His181, His184.
    Khan H; Barna T; Bruce NC; Munro AW; Leys D; Scrutton NS
    FEBS J; 2005 Sep; 272(18):4660-71. PubMed ID: 16156787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.