BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19839654)

  • 21. The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios.
    Adam N; Leroux F; Knapen D; Bals S; Blust R
    Water Res; 2015 Jan; 68():249-61. PubMed ID: 25462733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The relative importance of water and food as cadmium sources to Daphnia magna Straus.
    Barata C; Markich SJ; Baird DJ; Soares AM
    Aquat Toxicol; 2002 Dec; 61(3-4):143-54. PubMed ID: 12359386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of copper contaminated food on the life cycle and secondary production of Daphnia laevis.
    Rocha GS; Tonietto AE; Lombardi AT; Melão Mda G
    Ecotoxicol Environ Saf; 2016 Nov; 133():235-42. PubMed ID: 27472028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of chronic dietary copper exposure on growth and reproduction of Daphnia magna.
    De Schamphelaere KA; Janssen CR
    Environ Toxicol Chem; 2004 Aug; 23(8):2038-47. PubMed ID: 15352495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna.
    Xiao Y; Peijnenburg WJGM; Chen G; Vijver MG
    Sci Total Environ; 2018 Jan; 610-611():1329-1335. PubMed ID: 28851153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the effect of test medium on total Cu body burden of nano CuO-exposed Daphnia magna: A TXRF spectroscopy study.
    Muna M; Heinlaan M; Blinova I; Vija H; Kahru A
    Environ Pollut; 2017 Dec; 231(Pt 2):1488-1496. PubMed ID: 28967571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The bioaccumulation, elimination, and trophic transfer of BDE-47 in the aquatic food chain of Chlorella pyrenoidosa-Daphnia magna.
    Liu Y; Feng Y; Li J; Zhou D; Guo R; Ji R; Chen J
    Environ Pollut; 2020 Mar; 258():113720. PubMed ID: 31831226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of a stable isotope technique to determine the simultaneous uptake of cadmium, copper, nickel, lead, and zinc by the water flea Daphnia magna from water and the green algae Pseudokirchneriella subcapitata.
    Komjarova I; Blust R
    Environ Toxicol Chem; 2009 Aug; 28(8):1739-48. PubMed ID: 19290681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation.
    Dang F; Zhong H; Wang WX
    Aquat Toxicol; 2009 Sep; 94(3):238-44. PubMed ID: 19683350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic uptake of bioavailable cadmium, selenium, and zinc by Daphnia magna.
    Yu RQ; Wang WX
    Environ Toxicol Chem; 2002 Nov; 21(11):2348-55. PubMed ID: 12389913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cd and Zn uptake kinetics in Daphnia magna in relation to Cd exposure history.
    Guan R; Wang WX
    Environ Sci Technol; 2004 Nov; 38(22):6051-8. PubMed ID: 15573606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acclimation of Daphnia magna to environmentally realistic copper concentrations.
    Bossuyt BT; Janssen CR
    Comp Biochem Physiol C Toxicol Pharmacol; 2003 Nov; 136(3):253-64. PubMed ID: 14659459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioaccumulation and biomarker responses of cubic and octahedral Cu2O micro/nanocrystals in Daphnia magna.
    Fan W; Shi Z; Yang X; Cui M; Wang X; Zhang D; Liu H; Guo L
    Water Res; 2012 Nov; 46(18):5981-8. PubMed ID: 22999974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature and food concentration have limited influence on the mixture toxicity of copper and Microcystis aeruginosa to Daphnia magna.
    Hochmuth JD; Janssen CR; De Schamphelaere KA
    Environ Toxicol Chem; 2016 Mar; 35(3):742-9. PubMed ID: 26354710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of azithromycin on feeding behavior and nutrition accumulation of Daphnia magna under the different exposure pathways.
    Li Y; Ma Y; Yang L; Duan S; Zhou F; Chen J; Liu Y; Zhang B
    Ecotoxicol Environ Saf; 2020 Jul; 197():110573. PubMed ID: 32278825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison between two clones of Daphnia magna: effects of multigenerational cadmium exposure on toxicity, individual fitness, and biokinetics.
    Guan R; Wang WX
    Aquat Toxicol; 2006 Mar; 76(3-4):217-29. PubMed ID: 16289344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The combined effects of heavy metals (copper and zinc), temperature and food (Chlorella vulgaris) level on the demographic characters of Moina macrocopa (Crustacea: Cladocera).
    Nandini S; Picazo-Paez EA; Sarma SS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Aug; 42(10):1433-42. PubMed ID: 17680482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined toxicity of copper and phenol derivatives to Daphnia magna: effect of complexation reaction.
    Kim KT; Lee YG; Kim SD
    Environ Int; 2006 May; 32(4):487-92. PubMed ID: 16386792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiphase biokinetic modeling of cadmium accumulation in Daphnia magna from dietary and aqueous sources.
    Guan R; Wang WX
    Environ Toxicol Chem; 2006 Nov; 25(11):2840-6. PubMed ID: 17089705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake.
    Franklin NM; Stauber JL; Lim RP; Petocz P
    Environ Toxicol Chem; 2002 Nov; 21(11):2412-22. PubMed ID: 12389921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.