BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19839654)

  • 41. Uptake and elimination routes of inorganic mercury and methylmercury in Daphnia magna.
    Tsui MT; Wang WX
    Environ Sci Technol; 2004 Feb; 38(3):808-16. PubMed ID: 14968868
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of chronic dietary and waterborne cadmium exposures on the contamination level and reproduction of Daphnia magna.
    Geffard O; Geffard A; Chaumot A; Vollat B; Alvarez C; Tusseau-Vuillemin MH; Garric J
    Environ Toxicol Chem; 2008 May; 27(5):1128-34. PubMed ID: 18419192
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation onto life cycle parameters of Ceriodaphnia silvestrii submitted to 36 days dietary copper exposure.
    Rodgher S; Lombardi AT; Gama Melão Mda G
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1748-53. PubMed ID: 19375797
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna.
    Fan W; Cui M; Liu H; Wang C; Shi Z; Tan C; Yang X
    Environ Pollut; 2011 Mar; 159(3):729-34. PubMed ID: 21177008
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reduced cadmium accumulation and toxicity in Daphnia magna under carbon nanotube exposure.
    Liu J; Wang WX
    Environ Toxicol Chem; 2015 Dec; 34(12):2824-32. PubMed ID: 26094590
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cross-phylum comparison of a chronic biotic ligand model to predict chronic toxicity of copper to a freshwater rotifer, Brachionus calyciflorus (Pallas).
    De Schamphelaere KA; Heijerick DG; Janssen CR
    Ecotoxicol Environ Saf; 2006 Feb; 63(2):189-95. PubMed ID: 16129487
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distinct biokinetic behavior of ZnO nanoparticles in Daphnia magna quantified by synthesizing ⁶⁵Zn tracer.
    Li WM; Wang WX
    Water Res; 2013 Feb; 47(2):895-902. PubMed ID: 23200802
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chronic toxicity of silver nitrate to Ceriodaphnia dubia and Daphnia magna, and potential mitigating factors.
    Naddy RB; Gorsuch JW; Rehner AB; McNerney GR; Bell RA; Kramer JR
    Aquat Toxicol; 2007 Aug; 84(1):1-10. PubMed ID: 17658626
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of aqueous stable fullerene nanocrystal (nC60) on copper (trace necessary nutrient metal): Enhanced toxicity and accumulation of copper in Daphnia magna.
    Tao X; He Y; Fortner JD; Chen Y; Hughes JB
    Chemosphere; 2013 Aug; 92(9):1245-52. PubMed ID: 23755985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Alleviation of copper toxicity in Daphnia magna by hydrogen nanobubble water.
    Fan W; Zhang Y; Liu S; Li X; Li J
    J Hazard Mater; 2020 May; 389():122155. PubMed ID: 32004833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biokinetics and subcellular distribution of metals in Daphnia magna following Zn exposure: Implication for metal regulation.
    Zhao CM; Wang WX
    Sci Total Environ; 2019 Dec; 696():134004. PubMed ID: 31465922
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biokinetics and tolerance development of toxic metals in Daphnia magna.
    Tsui MT; Wang WX
    Environ Toxicol Chem; 2007 May; 26(5):1023-32. PubMed ID: 17521151
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative effects of graphene and graphene oxide on copper toxicity to Daphnia magna: Role of surface oxygenic functional groups.
    Liu Y; Fan W; Xu Z; Peng W; Luo S
    Environ Pollut; 2018 May; 236():962-970. PubMed ID: 29137888
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An evaluation of the bioavailability and aquatic toxicity attributed to ambient copper concentrations in surface waters from several parts of the world.
    Van Genderen E; Adams W; Cardwell R; van Sprang P; Arnold R; Santore R; Rodriguez P
    Integr Environ Assess Manag; 2008 Oct; 4(4):416-24. PubMed ID: 18598100
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microbial levan and pullulan as potential protective agents for reducing adverse effects of copper on Daphnia magna and Vibrio fischeri.
    Lončarević B; Lješević M; Marković M; Anđelković I; Gojgić-Cvijović G; Jakovljević D; Beškoski V
    Ecotoxicol Environ Saf; 2019 Oct; 181():187-193. PubMed ID: 31195227
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toxic microcystis reduces tolerance of daphnia to increased chloride, and low chloride alleviates the harm of toxic microcystis to daphnia.
    Li Y; Zhu Y; Ma L; Huang J; Sun Y; Zhang L; Lyu K; Yang Z
    Chemosphere; 2020 Dec; 260():127594. PubMed ID: 32673874
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of dietary copper on life-history traits of a tropical freshwater cladoceran.
    Gusso-Choueri PK; Choueri RB; Lombardi AT; Melão MG
    Arch Environ Contam Toxicol; 2012 May; 62(4):589-98. PubMed ID: 22076682
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of titanium dioxide nanoparticles in the elevated uptake and retention of cadmium and zinc in Daphnia magna.
    Tan C; Fan WH; Wang WX
    Environ Sci Technol; 2012 Jan; 46(1):469-76. PubMed ID: 22082004
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of an acute biotic ligand model to predict chronic copper toxicity to Daphnia magna in natural waters of Chile and reconstituted synthetic waters.
    Villavicencio G; Urrestarazu P; Arbildua J; Rodriguez PH
    Environ Toxicol Chem; 2011 Oct; 30(10):2319-25. PubMed ID: 21796669
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aqueous and dietary bioaccumulation of antibiotic tetracycline in D. magna and its multigenerational transfer.
    Kim HY; Jeon J; Hollender J; Yu S; Kim SD
    J Hazard Mater; 2014 Aug; 279():428-35. PubMed ID: 25093551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.