BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19839714)

  • 1. [Structure design examinations of three-dimensional textile scaffolds employed for tissue engineering in vitro: a pilot study].
    Bäumchen F; Koch D; Gräber HG
    Biomed Tech (Berl); 2009 Dec; 54(6):357-66. PubMed ID: 19839714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of defined polyglycolide scaffold structure on the proliferation of gingival fibroblasts in vitro: a pilot study.
    Bäumchen F; Smeets R; Koch D; Gräber HG
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2009 Oct; 108(4):505-13. PubMed ID: 19699119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of scaffold architecture and pore size on smooth muscle cell growth.
    Lee M; Wu BM; Dunn JC
    J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [In vitro tendon engineering using human dermal fibroblasts].
    Deng D; Liu W; Xu F; Wu XL; Wei X; Zhong B; Cui L; Cao YL
    Zhonghua Yi Xue Za Zhi; 2008 Apr; 88(13):914-8. PubMed ID: 18756959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodontal ligament and gingival fibroblast adhesion to dentin-like textured surfaces.
    Bruckmann C; Walboomers XF; Matsuzaka K; Jansen JA
    Biomaterials; 2005 Jan; 26(3):339-46. PubMed ID: 15262476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits.
    El-Backly RM; Massoud AG; El-Badry AM; Sherif RA; Marei MK
    Aust Endod J; 2008 Aug; 34(2):52-67. PubMed ID: 18666990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A PLGA membrane controlling cell behaviour for promoting tissue regeneration.
    Owen GR; Jackson J; Chehroudi B; Burt H; Brunette DM
    Biomaterials; 2005 Dec; 26(35):7447-56. PubMed ID: 16039709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds.
    Day RM; Boccaccini AR; Shurey S; Roether JA; Forbes A; Hench LL; Gabe SM
    Biomaterials; 2004 Dec; 25(27):5857-66. PubMed ID: 15172498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC
    Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber.
    Hokugo A; Takamoto T; Tabata Y
    Biomaterials; 2006 Jan; 27(1):61-7. PubMed ID: 16000222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffold's surface geometry significantly affects human stem cell bone tissue engineering.
    Graziano A; d'Aquino R; Cusella-De Angelis MG; De Francesco F; Giordano A; Laino G; Piattelli A; Traini T; De Rosa A; Papaccio G
    J Cell Physiol; 2008 Jan; 214(1):166-72. PubMed ID: 17565721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular interactions and biomechanical properties of a unique vascular-derived scaffold for periodontal tissue regeneration.
    Goktas S; Pierre N; Abe K; Dmytryk J; McFetridge PS
    Tissue Eng Part A; 2010 Mar; 16(3):769-80. PubMed ID: 19778172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering.
    Sumita Y; Honda MJ; Ohara T; Tsuchiya S; Sagara H; Kagami H; Ueda M
    Biomaterials; 2006 Jun; 27(17):3238-48. PubMed ID: 16504285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation.
    Cooper JA; Lu HH; Ko FK; Freeman JW; Laurencin CT
    Biomaterials; 2005 May; 26(13):1523-32. PubMed ID: 15522754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering.
    Huang W; Shi X; Ren L; Du C; Wang Y
    Biomaterials; 2010 May; 31(15):4278-85. PubMed ID: 20199806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable honeycomb collagen scaffold for dermal tissue engineering.
    George J; Onodera J; Miyata T
    J Biomed Mater Res A; 2008 Dec; 87(4):1103-11. PubMed ID: 18792951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration.
    Aboudzadeh N; Imani M; Shokrgozar MA; Khavandi A; Javadpour J; Shafieyan Y; Farokhi M
    J Biomed Mater Res A; 2010 Jul; 94(1):137-45. PubMed ID: 20127996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.