BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 198405)

  • 1. Slowly reversible binding of catecholamine to a nucleotide-sensitive state of the beta-adrenergic receptor.
    Williams LT; Lefkowitz RJ
    J Biol Chem; 1977 Oct; 252(20):7207-13. PubMed ID: 198405
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison of specificity of agonist and antagonist radioligand binding to beta adrenergic receptors.
    Lefkowitz RJ; Hamp M
    Nature; 1977 Aug; 268(5619):453-4. PubMed ID: 19707
    [No Abstract]   [Full Text] [Related]  

  • 3. Modulation of beta-adrenergic agonist binding by guanylnucleotides in avian erythrocytes.
    Simpson IA; Pfeuffer T
    FEBS Lett; 1980 Jun; 115(1):113-7. PubMed ID: 6248374
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification and regulation of beta-adrenergic receptors.
    Lefkowitz RJ
    Adv Exp Med Biol; 1978; 96():137-60. PubMed ID: 24993
    [No Abstract]   [Full Text] [Related]  

  • 5. Catecholamine binding to the beta-adrenergic receptor.
    Lefkowitz RJ; Williams LT
    Proc Natl Acad Sci U S A; 1977 Feb; 74(2):515-9. PubMed ID: 15249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor.
    De Lean A; Stadel JM; Lefkowitz RJ
    J Biol Chem; 1980 Aug; 255(15):7108-17. PubMed ID: 6248546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of adenylate cyclase by beta-adrenergic receptors: investigation of rate limiting steps by simultaneous assay of high affinity agonist binding and GDP release.
    De Lean A; Rouleau D; Lefkowitz RJ
    Life Sci; 1983 Sep; 33(10):943-54. PubMed ID: 6310288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Associations of [3H]dihydroalprenolol with biological membranes.
    Mendel CM; Almon RR
    Gen Pharmacol; 1979; 10(1):31-40. PubMed ID: 33101
    [No Abstract]   [Full Text] [Related]  

  • 9. Differential effects of cholera toxin on guanine nucleotide regulation of beta-adrenergic agonist high affinity binding and adenylate cyclase activation in frog erythrocyte membranes.
    Stadel JM; Lefkowitz RJ
    J Cyclic Nucleotide Res; 1981; 7(6):363-74. PubMed ID: 6125532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct studies of beta-adrenergic receptors intact frog erythrocytes.
    Mukherjee C; Lefkowitz RJ
    Life Sci; 1976 Dec; 19(12):1897-905. PubMed ID: 187891
    [No Abstract]   [Full Text] [Related]  

  • 11. Correlation of beta-adrenergic receptor-stimulated [3H]GDP release and adenylate cyclase activation. Differences between frog and turkey erythrocyte membranes.
    Pike LJ; Lefkowitz RJ
    J Biol Chem; 1981 Mar; 256(5):2207-12. PubMed ID: 6257708
    [No Abstract]   [Full Text] [Related]  

  • 12. Age-related parallel decline in beta-adrenergic receptors, adenylate cyclase and phosphodiesterase activity in rat erythrocyte membranes.
    Bylund DB; Tellez-IƱon MT; Hollenberg MD
    Life Sci; 1977 Aug; 21(3):403-10. PubMed ID: 197363
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of cholera toxin and guanosine 5'-[betagamma-imido]triphosphate on beta-adrenergic-receptor affinity.
    Fischer J; Sharp GW
    Biochem J; 1978 Nov; 176(2):505-10. PubMed ID: 217363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity chromatography of the beta-adrenergic receptor.
    Caron MG; Srinivasan Y; Pitha J; Kociolek K; Lefkowitz RJ
    J Biol Chem; 1979 Apr; 254(8):2923-7. PubMed ID: 218957
    [No Abstract]   [Full Text] [Related]  

  • 15. Agonist-specific alterations in receptor binding affinity associated with solubilization of turkey erythrocyte membrane beta adrenergic receptors.
    Pike LJ; Lefkowitz RJ
    Mol Pharmacol; 1978 Mar; 14(2):370-5. PubMed ID: 25377
    [No Abstract]   [Full Text] [Related]  

  • 16. Selective alteration in high affinity agonist binding: a mechanism of beta-adrenergic receptor desensitization.
    Wessels MR; Mullikin D; Lefkowitz RJ
    Mol Pharmacol; 1979 Jul; 16(1):10-20. PubMed ID: 39240
    [No Abstract]   [Full Text] [Related]  

  • 17. Loss of beta-adrenergic receptor-guanine nucleotide regulatory protein interactions accompanies decline in catecholamine responsiveness of adenylate cyclase in maturing rat erythrocytes.
    Limbird LE; Gill DM; Stadel JM; Hickey AR; Lefkowitz RJ
    J Biol Chem; 1980 Mar; 255(5):1854-61. PubMed ID: 6243651
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of beta-adrenergic receptor and adenylate cyclase in canine cerebellum.
    Nishikori K; Maeno H
    Arch Biochem Biophys; 1979 Jul; 195(2):505-17. PubMed ID: 224821
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction between beta-adrenergic receptors and guanine nucleotide sites in turkey erythrocyte membranes.
    Vauquelin G; Bottari S; Andre C; Jacobsson B; Strosberg AD
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):3801-5. PubMed ID: 6253990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow GDP dissociation from the guanyl nucleotide site of turkey erythrocyte membranes is not the rate limiting step in the activation of adenylate cylase by beta-adrenergic receptors.
    Levitzki A
    FEBS Lett; 1980 Jun; 115(1):9-10. PubMed ID: 6248377
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.