BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 19840668)

  • 41. Activation of influenza A viruses by host proteases from swine airway epithelium.
    Peitsch C; Klenk HD; Garten W; Böttcher-Friebertshäuser E
    J Virol; 2014 Jan; 88(1):282-91. PubMed ID: 24155384
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heterogeneity of the MDCK cell line and its applicability for influenza virus research.
    Lugovtsev VY; Melnyk D; Weir JP
    PLoS One; 2013; 8(9):e75014. PubMed ID: 24058646
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolism of MDCK cells during cell growth and influenza virus production in large-scale microcarrier culture.
    Genzel Y; Behrendt I; König S; Sann H; Reichl U
    Vaccine; 2004 Jun; 22(17-18):2202-8. PubMed ID: 15149778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium.
    Böttcher-Friebertshäuser E; Klenk HD; Garten W
    Pathog Dis; 2013 Nov; 69(2):87-100. PubMed ID: 23821437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasminogen promotes influenza A virus replication through an annexin 2-dependent pathway in the absence of neuraminidase.
    LeBouder F; Lina B; Rimmelzwaan GF; Riteau B
    J Gen Virol; 2010 Nov; 91(Pt 11):2753-61. PubMed ID: 20702651
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The growth of attenuated influenza vaccine donor strains in continuous cell lines.
    Audsley JM; Tannock GA
    J Virol Methods; 2005 Feb; 123(2):187-93. PubMed ID: 15620401
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of substrate analogue inhibitors for the human airway trypsin-like protease HAT.
    Sielaff F; Böttcher-Friebertshäuser E; Meyer D; Saupe SM; Volk IM; Garten W; Steinmetzer T
    Bioorg Med Chem Lett; 2011 Aug; 21(16):4860-4. PubMed ID: 21741839
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High titer growth of human and avian influenza viruses in an immortalized chick embryo cell line without the need for exogenous proteases.
    Smith KA; Colvin CJ; Weber PS; Spatz SJ; Coussens PM
    Vaccine; 2008 Jul; 26(29-30):3778-82. PubMed ID: 18524432
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptation of a Madin-Darby canine kidney cell line to suspension growth in serum-free media and comparison of its ability to produce avian influenza virus to Vero and BHK21 cell lines.
    van Wielink R; Kant-Eenbergen HC; Harmsen MM; Martens DE; Wijffels RH; Coco-Martin JM
    J Virol Methods; 2011 Jan; 171(1):53-60. PubMed ID: 20933017
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Hemagglutinin of Bat-Associated Influenza Viruses Is Activated by TMPRSS2 for pH-Dependent Entry into Bat but Not Human Cells.
    Hoffmann M; Krüger N; Zmora P; Wrensch F; Herrler G; Pöhlmann S
    PLoS One; 2016; 11(3):e0152134. PubMed ID: 27028521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition of proteolytic cleavage of the hemagglutinin of influenza virus by the calcium-specific ionophore A23187.
    Klenk HD; Garten W; Rott R
    EMBO J; 1984 Dec; 3(12):2911-5. PubMed ID: 6441705
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enterokinase Enhances Influenza A Virus Infection by Activating Trypsinogen in Human Cell Lines.
    Hayashi H; Kubo Y; Izumida M; Takahashi E; Kido H; Sato K; Yamaya M; Nishimura H; Nakayama K; Matsuyama T
    Front Cell Infect Microbiol; 2018; 8():91. PubMed ID: 29629340
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studies on influenza haemagglutinin fusion peptide mutants generated by reverse genetics.
    Cross KJ; Wharton SA; Skehel JJ; Wiley DC; Steinhauer DA
    EMBO J; 2001 Aug; 20(16):4432-42. PubMed ID: 11500371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Susceptibility of different cell lines to Avian and Swine Influenza viruses.
    Lombardo T; Dotti S; Renzi S; Ferrari M
    J Virol Methods; 2012 Oct; 185(1):82-8. PubMed ID: 22728276
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production of influenza virus in serum-free mammalian cell cultures.
    Merten OW; Manuguerra JC; Hannoun C; van der Werf S
    Dev Biol Stand; 1999; 98():23-37; discussion 73-4. PubMed ID: 10494957
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of human intestinal epithelial differentiated cells (Caco-2) for replication, plaque formation and isolation of avian influenza viruses.
    Jahangir A; Ruenphet S; Hara K; Shoham D; Sultana N; Okamura M; Nakamura M; Takehara K
    J Virol Methods; 2010 Oct; 169(1):232-8. PubMed ID: 20674612
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hepatocyte growth factor activator inhibitor type 1 inhibits protease activity and proteolytic activation of human airway trypsin-like protease.
    Kato M; Hashimoto T; Shimomura T; Kataoka H; Ohi H; Kitamura N
    J Biochem; 2012 Feb; 151(2):179-87. PubMed ID: 22023801
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of a hemagglutinin-specific inhibitor of influenza A virus.
    Luo G; Colonno R; Krystal M
    Virology; 1996 Dec; 226(1):66-76. PubMed ID: 8941323
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A mutant H3N2 influenza virus uses an alternative activation mechanism in TMPRSS2 knockout mice by loss of an oligosaccharide in the hemagglutinin stalk region.
    Sakai K; Sekizuka T; Ami Y; Nakajima N; Kitazawa M; Sato Y; Nakajima K; Anraku M; Kubota T; Komase K; Takehara K; Hasegawa H; Odagiri T; Tashiro M; Kuroda M; Takeda M
    J Virol; 2015 May; 89(9):5154-8. PubMed ID: 25673722
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mathematical model of influenza A virus production in large-scale microcarrier culture.
    Möhler L; Flockerzi D; Sann H; Reichl U
    Biotechnol Bioeng; 2005 Apr; 90(1):46-58. PubMed ID: 15736163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.