These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 19840875)
1. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Meenach SA; Hilt JZ; Anderson KW Acta Biomater; 2010 Mar; 6(3):1039-46. PubMed ID: 19840875 [TBL] [Abstract][Full Text] [Related]
2. Characterization of PEG-iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery. Meenach SA; Shapiro JM; Hilt JZ; Anderson KW J Biomater Sci Polym Ed; 2013; 24(9):1112-26. PubMed ID: 23683041 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites. Frimpong RA; Fraser S; Hilt JZ J Biomed Mater Res A; 2007 Jan; 80(1):1-6. PubMed ID: 16941587 [TBL] [Abstract][Full Text] [Related]
4. Biocompatibility analysis of magnetic hydrogel nanocomposites based on poly(N-isopropylacrylamide) and iron oxide. Meenach SA; Anderson AA; Suthar M; Anderson KW; Hilt JZ J Biomed Mater Res A; 2009 Dec; 91(3):903-9. PubMed ID: 19090484 [TBL] [Abstract][Full Text] [Related]
5. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Li FR; Yan WH; Guo YH; Qi H; Zhou HX Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033 [TBL] [Abstract][Full Text] [Related]
6. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression. Tang QS; Zhang DS; Cong XM; Wan ML; Jin LQ Biomaterials; 2008 Jun; 29(17):2673-9. PubMed ID: 18396332 [TBL] [Abstract][Full Text] [Related]
7. Controlled synergistic delivery of paclitaxel and heat from poly(β-amino ester)/iron oxide-based hydrogel nanocomposites. Meenach SA; Otu CG; Anderson KW; Hilt JZ Int J Pharm; 2012 May; 427(2):177-84. PubMed ID: 22326297 [TBL] [Abstract][Full Text] [Related]
8. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs. Yang Z; Zhang Y; Markland P; Yang VC J Biomed Mater Res; 2002 Oct; 62(1):14-21. PubMed ID: 12124782 [TBL] [Abstract][Full Text] [Related]
9. [Magnetically based enhancement of nanoparticle uptake in tumor cells: combination of magnetically induced cell labeling and magnetic heating]. Kettering M; Winter J; Zeisberger M; Alexiou C; Bremer-Streck S; Bergemann C; Kaiser WA; Hilger I Rofo; 2006 Dec; 178(12):1255-60. PubMed ID: 17136650 [TBL] [Abstract][Full Text] [Related]
10. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles. Kalambur VS; Longmire EK; Bischof JC Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940 [TBL] [Abstract][Full Text] [Related]
11. Magnetic mesoporous silica spheres for hyperthermia therapy. Martín-Saavedra FM; Ruíz-Hernández E; Boré A; Arcos D; Vallet-Regí M; Vilaboa N Acta Biomater; 2010 Dec; 6(12):4522-31. PubMed ID: 20601238 [TBL] [Abstract][Full Text] [Related]
12. Novel composite drug delivery system for honokiol delivery: self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel. Gong C; Shi S; Wang X; Wang Y; Fu S; Dong P; Chen L; Zhao X; Wei Y; Qian Z J Phys Chem B; 2009 Jul; 113(30):10183-8. PubMed ID: 19572675 [TBL] [Abstract][Full Text] [Related]
13. In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. Babincov M; Altanerov V; Altaner C; Bergemann C; Babinec P IEEE Trans Nanobioscience; 2008 Mar; 7(1):15-9. PubMed ID: 18334449 [TBL] [Abstract][Full Text] [Related]
14. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties. Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391 [TBL] [Abstract][Full Text] [Related]
15. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs. Diramio JA; Kisaalita WS; Majetich GF; Shimkus JM Biotechnol Prog; 2005; 21(4):1281-8. PubMed ID: 16080712 [TBL] [Abstract][Full Text] [Related]
16. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808 [TBL] [Abstract][Full Text] [Related]
17. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol. Brink KS; Yang PJ; Temenoff JS Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068 [TBL] [Abstract][Full Text] [Related]
18. Doxorubicin Intracellular Remote Release from Biocompatible Oligo(ethylene glycol) Methyl Ether Methacrylate-Based Magnetic Nanogels Triggered by Magnetic Hyperthermia. Cazares-Cortes E; Espinosa A; Guigner JM; Michel A; Griffete N; Wilhelm C; Ménager C ACS Appl Mater Interfaces; 2017 Aug; 9(31):25775-25788. PubMed ID: 28723064 [TBL] [Abstract][Full Text] [Related]
19. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427 [TBL] [Abstract][Full Text] [Related]
20. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Purushotham S; Chang PE; Rumpel H; Kee IH; Ng RT; Chow PK; Tan CK; Ramanujan RV Nanotechnology; 2009 Jul; 20(30):305101. PubMed ID: 19581698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]