BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 19841715)

  • 21. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going?
    Luong T; Salabarria AC; Roach DR
    Clin Ther; 2020 Sep; 42(9):1659-1680. PubMed ID: 32883528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of bacteriophage vB_Pd_PDCC-1 as biological control agent of Photobacterium damselae subsp. damselae during hatching of longfin yellowtail (Seriola rivoliana) eggs.
    Veyrand-Quirós B; Gómez-Gil B; Lomeli-Ortega CO; Escobedo-Fregoso C; Millard AD; Tovar-Ramírez D; Balcázar JL; Quiroz-Guzmán E
    J Appl Microbiol; 2020 Dec; 129(6):1497-1510. PubMed ID: 32538525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficacy of experimental phage therapies in livestock.
    Dec M; Wernicki A; Urban-Chmiel R
    Anim Health Res Rev; 2020 Jun; 21(1):69-83. PubMed ID: 32618543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Designation of pathogenic resistant bacteria in the Sparusaurata sea collected in Tunisia coastlines: Correlation with high performance liquid chromatography-tandem mass spectrometry analysis of antibiotics.
    Zouiten A; Mehri I; Beltifa A; Ghorbel A; Sire O; Van Loco J; Abdenaceur H; Reyns T; Ben Mansour H
    Microb Pathog; 2017 May; 106():3-8. PubMed ID: 28062288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An overview of ornamental fish diseases and therapy.
    Gratzek JB
    J Small Anim Pract; 1981 Jun; 22(6):345-66. PubMed ID: 7311476
    [No Abstract]   [Full Text] [Related]  

  • 26. Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four danish rainbow trout farms.
    Schmidt AS; Bruun MS; Dalsgaard I; Pedersen K; Larsen JL
    Appl Environ Microbiol; 2000 Nov; 66(11):4908-15. PubMed ID: 11055942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens.
    Viertel TM; Ritter K; Horz HP
    J Antimicrob Chemother; 2014 Sep; 69(9):2326-36. PubMed ID: 24872344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unravelling the menace: detection of antimicrobial resistance in aquaculture.
    Preena PG; Swaminathan TR; Rejish Kumar VJ; Bright Singh IS
    Lett Appl Microbiol; 2020 Jul; 71(1):26-38. PubMed ID: 32248555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phages amid antimicrobial resistance.
    Mohan Raj JR; Karunasagar I
    Crit Rev Microbiol; 2019; 45(5-6):701-711. PubMed ID: 31775552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phage Therapy in the Era of Multidrug Resistance in Bacteria: A Systematic Review.
    Aranaga C; Pantoja LD; Martínez EA; Falco A
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel antimicrobial agents for combating antibiotic-resistant bacteria.
    Chang RYK; Nang SC; Chan HK; Li J
    Adv Drug Deliv Rev; 2022 Aug; 187():114378. PubMed ID: 35671882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification.
    Flores-Kossack C; Montero R; Köllner B; Maisey K
    Fish Shellfish Immunol; 2020 Mar; 98():52-67. PubMed ID: 31899356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacteriophage therapy for management of bacterial infections in veterinary practice: what was once old is new again.
    Squires RA
    N Z Vet J; 2018 Sep; 66(5):229-235. PubMed ID: 29925297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Humic substances. Part 1: Dissolved humic substances (HS) in aquaculture and ornamental fish breeding.
    Meinelt T; Schreckenbach K; Pietrock M; Heidrich S; Steinberg CE
    Environ Sci Pollut Res Int; 2008 Jan; 15(1):17-22. PubMed ID: 18306883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenotypic and Genetic Characterization of
    Janelidze N; Jaiani E; Didebulidze E; Kusradze I; Kotorashvili A; Chalidze K; Porchkhidze K; Khukhunashvili T; Tsertsvadze G; Jgenti D; Bajashvili T; Tediashvili M
    Viruses; 2022 Feb; 14(2):. PubMed ID: 35216005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ameliorating the antimicrobial resistance crisis: phage therapy.
    Saha D; Mukherjee R
    IUBMB Life; 2019 Jul; 71(7):781-790. PubMed ID: 30674079
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prevalence, virulence genes, and antimicrobial resistance of Vibrio species isolated from diseased marine fish in South China.
    Deng Y; Xu L; Chen H; Liu S; Guo Z; Cheng C; Ma H; Feng J
    Sci Rep; 2020 Aug; 10(1):14329. PubMed ID: 32868874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The disparate effects of bacteriophages on antibiotic-resistant bacteria.
    Torres-Barceló C
    Emerg Microbes Infect; 2018 Oct; 7(1):168. PubMed ID: 30302018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance.
    Oromí-Bosch A; Antani JD; Turner PE
    Annu Rev Virol; 2023 Sep; 10(1):503-524. PubMed ID: 37268007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacteriophages: The promising therapeutic approach for enhancing ciprofloxacin efficacy against bacterial infection.
    Shariati A; Noei M; Chegini Z
    J Clin Lab Anal; 2023 May; 37(9-10):e24932. PubMed ID: 37377167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.