BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 19841833)

  • 1. Robot-assisted rehabilitation of the paretic upper limb: rationale of the ARAMIS project.
    Dolce G; Lucca LF; Pignolo L
    J Rehabil Med; 2009 Nov; 41(12):1007-101. PubMed ID: 19841833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ARAMIS project: a concept robot and technical design.
    Colizzi L; Lidonnici A; Pignolo L
    J Rehabil Med; 2009 Nov; 41(12):1011-101. PubMed ID: 19841834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new treatment in the rehabilitation of the paretic upper limb after stroke: the ARAMIS prototype and treatment protocol.
    Pignolo L; Lucca LF; Basta G; Serra S; Pugliese ME; Sannita WG; Dolce G
    Ann Ist Super Sanita; 2016; 52(2):301-8. PubMed ID: 27364408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotics in neuro-rehabilitation.
    Pignolo L
    J Rehabil Med; 2009 Nov; 41(12):955-60. PubMed ID: 19841823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress?
    Lucca LF
    J Rehabil Med; 2009 Nov; 41(12):1003-100. PubMed ID: 19841832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An estimated 30-60% of adult patients after stroke do not achieve satisfactory motor recovery of the upper limb despite intensive rehabilitation.
    Lucca LF; Castelli E; Sannita WG
    J Rehabil Med; 2009 Nov; 41(12):953. PubMed ID: 19841822
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke.
    Veerbeek JM; Langbroek-Amersfoort AC; van Wegen EE; Meskers CG; Kwakkel G
    Neurorehabil Neural Repair; 2017 Feb; 31(2):107-121. PubMed ID: 27597165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke.
    Chang JJ; Tung WL; Wu WL; Huang MH; Su FC
    Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach.
    Piron L; Turolla A; Agostini M; Zucconi C; Cortese F; Zampolini M; Zannini M; Dam M; Ventura L; Battauz M; Tonin P
    J Rehabil Med; 2009 Nov; 41(12):1016-102. PubMed ID: 19841835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke.
    Lewis GN; Perreault EJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review.
    Kwakkel G; Kollen BJ; Krebs HI
    Neurorehabil Neural Repair; 2008; 22(2):111-21. PubMed ID: 17876068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Does upper limb robot-assisted rehabilitation contribute to improve the prognosis of post-stroke hemiparesis?].
    Duret C; Gracies JM
    Rev Neurol (Paris); 2014 Nov; 170(11):671-9. PubMed ID: 25304657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process.
    Duret C; Courtial O; Grosmaire AG; Hutin E
    Biomed Res Int; 2015; 2015():482389. PubMed ID: 25821804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-mediated therapy for paretic upper limb of chronic patients following neurological injury.
    Posteraro F; Mazzoleni S; Aliboni S; Cesqui B; Battaglia A; Dario P; Micera S
    J Rehabil Med; 2009 Nov; 41(12):976-80. PubMed ID: 19841827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients.
    Otaka E; Otaka Y; Kasuga S; Nishimoto A; Yamazaki K; Kawakami M; Ushiba J; Liu M
    J Neuroeng Rehabil; 2015 Aug; 12():66. PubMed ID: 26265327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study.
    Taveggia G; Borboni A; Salvi L; Mulé C; Fogliaresi S; Villafañe JH; Casale R
    Eur J Phys Rehabil Med; 2016 Dec; 52(6):767-773. PubMed ID: 27406879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [ARMOR: an electromechanical robot for upper limb training following stroke. A prospective randomised controlled pilot study].
    Mayr A; Kofler M; Saltuari L
    Handchir Mikrochir Plast Chir; 2008 Feb; 40(1):66-73. PubMed ID: 18322901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke.
    Hughes AM; Freeman CT; Burridge JH; Chappell PH; Lewin PL; Rogers E
    Neurorehabil Neural Repair; 2009; 23(6):559-68. PubMed ID: 19190087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can robot-based measurements improve prediction of motor performance after robot-assisted upper-limb rehabilitation in patients with moderate-to-severe sub-acute stroke?
    Duret C; Pila O; Grosmaire AG; Koeppel T
    Restor Neurol Neurosci; 2019; 37(2):119-129. PubMed ID: 30909254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.