These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19842018)

  • 21. Preparation of bioactive titanium metal via anodic oxidation treatment.
    Yang B; Uchida M; Kim HM; Zhang X; Kokubo T
    Biomaterials; 2004 Mar; 25(6):1003-10. PubMed ID: 14615165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled release of strontium ions from a bioactive Ti metal with a Ca-enriched surface layer.
    Yamaguchi S; Nath S; Matsushita T; Kokubo T
    Acta Biomater; 2014 May; 10(5):2282-9. PubMed ID: 24486909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of calcium ions in defining the bioactivity of surface modified Ti metal.
    Rajendran A; Sugunapriyadharshini S; Mishra D; Pattanayak DK
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():197-204. PubMed ID: 30813020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface analysis of Ti-15Zr-4Nb-4Ta alloy after implantation in rat tibia.
    Okazak Y; Nishimura E; Nakada H; Kobayashi K
    Biomaterials; 2001 Mar; 22(6):599-607. PubMed ID: 11219725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid.
    Kim HM; Himeno T; Kawashita M; Lee JH; Kokubo T; Nakamura T
    J Biomed Mater Res A; 2003 Dec; 67(4):1305-9. PubMed ID: 14624517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions.
    Cui X; Kim HM; Kawashita M; Wang L; Xiong T; Kokubo T; Nakamura T
    J Mater Sci Mater Med; 2008 Apr; 19(4):1767-73. PubMed ID: 18049873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compositional dependence of the apatite formation ability of Ti-Zr alloys designed for hard tissue reconstruction.
    Miyazaki T; Hosokawa T; Yokoyama K; Shiraishi T
    J Mater Sci Mater Med; 2020 Nov; 31(11):110. PubMed ID: 33165675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological Safety Evaluation and Surface Modification of Biocompatible Ti-15Zr-4Nb Alloy.
    Okazaki Y; Katsuda SI
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33557312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomimetic apatite formation on chemically treated titanium.
    Jonásová L; Müller FA; Helebrant A; Strnad J; Greil P
    Biomaterials; 2004; 25(7-8):1187-94. PubMed ID: 14643592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of an ascorbate-apatite composite layer on titanium.
    Ito A; Sogo Y; Ebihara Y; Onoguchi M; Oyane A; Ichinose N
    Biomed Mater; 2007 Sep; 2(3):S181-5. PubMed ID: 18458465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of apatite formation on Ti-50Zr alloy in simulated body environment.
    Miyazaki T; Ota S; Nakamura J
    Dent Mater J; 2023 May; 42(3):390-395. PubMed ID: 36858626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-temperature deposition of rutile film on biomaterials substrates and its ability to induce apatite deposition in vitro.
    Wu JM; Liu JF; Hayakawa S; Tsuru K; Osaka A
    J Mater Sci Mater Med; 2007 Aug; 18(8):1529-36. PubMed ID: 17410409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporation of Ca ions into anodic oxide coatings on the Ti-13Nb-13Zr alloy by plasma electrolytic oxidation.
    Michalska J; Sowa M; Piotrowska M; Widziołek M; Tylko G; Dercz G; Socha RP; Osyczka AM; Simka W
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109957. PubMed ID: 31500028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys.
    Ito A; Okazaki Y; Tateishi T; Ito Y
    J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced platelet adhesion to titanium metal coated with apatite, albumin-apatite composite or laminin-apatite composite.
    Uchida M; Ito A; Furukawa KS; Nakamura K; Onimura Y; Oyane A; Ushida T; Yamane T; Tamaki T; Tateishi T
    Biomaterials; 2005 Dec; 26(34):6924-31. PubMed ID: 15967494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of metal release from various metallic biomaterials in vitro.
    Okazaki Y; Gotoh E
    Biomaterials; 2005 Jan; 26(1):11-21. PubMed ID: 15193877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Component effects of bioactive glass on corrosion resistance and in vitro biological properties of apatite-matrix coatings.
    Su TR; Chu YH; Yang HW; Huang YF; Ding SJ
    Biomed Mater Eng; 2019; 30(2):207-218. PubMed ID: 30741668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleation and growth of apatite on an anatase layer irradiated with UV light under different environmental conditions.
    Uetsuki K; Nakai S; Shirosaki Y; Hayakawa S; Osaka A
    J Biomed Mater Res A; 2013 Mar; 101(3):712-9. PubMed ID: 22941932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioactive metals: preparation and properties.
    Kokubo T; Kim HM; Kawashita M; Nakamura T
    J Mater Sci Mater Med; 2004 Feb; 15(2):99-107. PubMed ID: 15330042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study.
    Wang CX; Wang M; Zhou X
    Biomaterials; 2003 Aug; 24(18):3069-77. PubMed ID: 12895579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.