These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 19842018)
41. The effect of NaOH concentration on the steam-hydrothermally treated bioactive microarc oxidation coatings containing Ca, P, Si and Na on pure Ti surface. Zhou R; Wei D; Cao J; Feng W; Cheng S; Du Q; Li B; Wang Y; Jia D; Zhou Y Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():669-680. PubMed ID: 25686996 [TBL] [Abstract][Full Text] [Related]
42. A comparative study of in vitro apatite deposition on heat-, H(2)O(2)-, and NaOH-treated titanium surfaces. Wang XX; Hayakawa S; Tsuru K; Osaka A J Biomed Mater Res; 2001 Feb; 54(2):172-8. PubMed ID: 11093176 [TBL] [Abstract][Full Text] [Related]
43. Apatite-forming ability of titanium in terms of pH of the exposed solution. Pattanayak DK; Yamaguchi S; Matsushita T; Nakamura T; Kokubo T J R Soc Interface; 2012 Sep; 9(74):2145-55. PubMed ID: 22417910 [TBL] [Abstract][Full Text] [Related]
44. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art. Sepahvandi A; Moztarzadeh F; Mozafari M; Ghaffari M; Raee N Colloids Surf B Biointerfaces; 2011 Sep; 86(2):390-6. PubMed ID: 21592746 [TBL] [Abstract][Full Text] [Related]
45. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Chen XB; Li YC; Du Plessis J; Hodgson PD; Wen C Acta Biomater; 2009 Jun; 5(5):1808-20. PubMed ID: 19223253 [TBL] [Abstract][Full Text] [Related]
46. In vitro apatite formation on nano-crystalline titania layer aligned parallel to Ti6Al4V alloy substrates with sub-millimeter gap. Hayakawa S; Matsumoto Y; Uetsuki K; Shirosaki Y; Osaka A J Mater Sci Mater Med; 2015 Jun; 26(6):190. PubMed ID: 25989935 [TBL] [Abstract][Full Text] [Related]
47. Surface treatment, corrosion behavior, and apatite-forming ability of Ti-45Nb implant alloy. Gostin PF; Helth A; Voss A; Sueptitz R; Calin M; Eckert J; Gebert A J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):269-78. PubMed ID: 23166048 [TBL] [Abstract][Full Text] [Related]
48. Adherent apatite coating on titanium substrate using chemical deposition. Rohanizadeh R; LeGeros RZ; Harsono M; Bendavid A J Biomed Mater Res A; 2005 Mar; 72(4):428-38. PubMed ID: 15666365 [TBL] [Abstract][Full Text] [Related]
49. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin. Kodama T; Goto T; Miyazaki T; Takahashi T Int J Oral Maxillofac Implants; 2008; 23(6):1013-9. PubMed ID: 19216269 [TBL] [Abstract][Full Text] [Related]
50. An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal. Takadama H; Kim HM; Kokubo T; Nakamura T J Biomed Mater Res; 2001 May; 55(2):185-93. PubMed ID: 11255170 [TBL] [Abstract][Full Text] [Related]
51. Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method. Wu C; Ramaswamy Y; Gale D; Yang W; Xiao K; Zhang L; Yin Y; Zreiqat H Acta Biomater; 2008 May; 4(3):569-76. PubMed ID: 18182336 [TBL] [Abstract][Full Text] [Related]
52. Fabrication and characterization of oxygen-diffused titanium for biomedical applications. Yamamoto O; Alvarez K; Kikuchi T; Fukuda M Acta Biomater; 2009 Nov; 5(9):3605-15. PubMed ID: 19523543 [TBL] [Abstract][Full Text] [Related]
53. Preparation of different forms of titanium oxide on titanium surface: effects on apatite deposition. Rohanizadeh R; Al-Sadeq M; Legeros RZ J Biomed Mater Res A; 2004 Nov; 71(2):343-52. PubMed ID: 15376266 [TBL] [Abstract][Full Text] [Related]
54. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. Takadama H; Kim HM; Kokubo T; Nakamura T J Biomed Mater Res; 2001 Dec; 57(3):441-8. PubMed ID: 11523039 [TBL] [Abstract][Full Text] [Related]
55. [Experimental study of fast formation of biomimetic apatite coatings on pure titanium surface]. He FM; Chen S; Liu L; Zhao SS; Sheng ZL; Wang XX Zhonghua Kou Qiang Yi Xue Za Zhi; 2006 Apr; 41(4):240-1. PubMed ID: 16784594 [TBL] [Abstract][Full Text] [Related]
56. Modification of electrochemically deposited apatite using supercritical water. Ban S; Hasegawa J Dent Mater J; 2001 Dec; 20(4):247-56. PubMed ID: 11915620 [TBL] [Abstract][Full Text] [Related]
57. Apatite Formation and Biocompatibility of a Low Young's Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water. Tanaka H; Mori Y; Noro A; Kogure A; Kamimura M; Yamada N; Hanada S; Masahashi N; Itoi E PLoS One; 2016; 11(2):e0150081. PubMed ID: 26914329 [TBL] [Abstract][Full Text] [Related]
58. Comparison of apatite-coated titanium prepared by blast coating and flame spray methods--evaluation using simulated body fluid and initial histological study. Mano T; Ishikawa K; Harada K; Umeda H; Ueyama Y Dent Mater J; 2011; 30(4):431-7. PubMed ID: 21778611 [TBL] [Abstract][Full Text] [Related]
59. Characterization of Oxide Film of Implantable Metals by Electrochemical Impedance Spectroscopy. Okazaki Y Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31652695 [TBL] [Abstract][Full Text] [Related]
60. Designing new biocompatible glass-forming Ti75-x Zr10 Nbx Si15 (x = 0, 15) alloys: corrosion, passivity, and apatite formation. Abdi S; Oswald S; Gostin PF; Helth A; Sort J; Baró MD; Calin M; Schultz L; Eckert J; Gebert A J Biomed Mater Res B Appl Biomater; 2016 Jan; 104(1):27-38. PubMed ID: 25611821 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]