BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 19842114)

  • 1. A tissue-like construct of human bone marrow MSCs composite scaffold support in vivo ectopic bone formation.
    Ben-David D; Kizhner T; Livne E; Srouji S
    J Tissue Eng Regen Med; 2010 Jan; 4(1):30-7. PubMed ID: 19842114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo osteogenic capability of human mesenchymal cells cultured on hydroxyapatite and on beta-tricalcium phosphate.
    Matsushima A; Kotobuki N; Tadokoro M; Kawate K; Yajima H; Takakura Y; Ohgushi H
    Artif Organs; 2009 Jun; 33(6):474-81. PubMed ID: 19473144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate.
    Liu G; Zhao L; Cui L; Liu W; Cao Y
    Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone marrow mesenchymal stem cells form ectopic woven bone in vivo through endochondral bone formation.
    Chang SC; Tai CL; Chung HY; Lin TM; Jeng LB
    Artif Organs; 2009 Apr; 33(4):301-8. PubMed ID: 19335406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells.
    Liu G; Shu C; Cui L; Liu W; Cao Y
    Cryobiology; 2008 Jun; 56(3):209-15. PubMed ID: 18430412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-scaffold transplant of hydrogel seeded with rat bone marrow progenitors for bone regeneration.
    Ben-David D; Kizhner TA; Kohler T; Müller R; Livne E; Srouji S
    J Craniomaxillofac Surg; 2011 Jul; 39(5):364-71. PubMed ID: 20947366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells.
    Yang Q; Peng J; Guo Q; Huang J; Zhang L; Yao J; Yang F; Wang S; Xu W; Wang A; Lu S
    Biomaterials; 2008 May; 29(15):2378-87. PubMed ID: 18313139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study.
    Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y
    Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow.
    Zhang W; Walboomers XF; van Osch GJ; van den Dolder J; Jansen JA
    Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged osteogenesis from human mesenchymal stem cells implanted in immunodeficient mice by using coralline hydroxyapatite incorporating rhBMP2 microspheres.
    Fu K; Xu Q; Czernuszka J; McKenna CE; Ebetino FH; Russell RG; Triffitt JT; Xia Z
    J Biomed Mater Res A; 2010 Mar; 92(4):1256-64. PubMed ID: 19322875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue regeneration and repair of goat segmental femur defect with bioactive triphasic ceramic-coated hydroxyapatite scaffold.
    Nair MB; Varma HK; Menon KV; Shenoy SJ; John A
    J Biomed Mater Res A; 2009 Dec; 91(3):855-65. PubMed ID: 19065569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of bone graft matrices for human mesenchymal stem cell-directed osteogenesis.
    Harris CT; Cooper LF
    J Biomed Mater Res A; 2004 Mar; 68(4):747-55. PubMed ID: 14986329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical-scale expansion of a mixed population of bone-marrow-derived stem and progenitor cells for potential use in bone-tissue regeneration.
    Dennis JE; Esterly K; Awadallah A; Parrish CR; Poynter GM; Goltry KL
    Stem Cells; 2007 Oct; 25(10):2575-82. PubMed ID: 17585167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.
    Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S
    Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopy analysis of bone marrow-derived osteoprogenitor cells cultured on hydrogel 3-D scaffold.
    Srouji S; Maurice S; Livne E
    Microsc Res Tech; 2005 Feb; 66(2-3):132-8. PubMed ID: 15880496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixing conditions for cell scaffolds affect the bone formation induced by bone engineering with human bone marrow stromal cells, beta-tricalcium phosphate granules, and rhBMP-2.
    Uchida M; Agata H; Sagara H; Shinohara Y; Kagami H; Asahina I
    J Biomed Mater Res A; 2009 Oct; 91(1):84-91. PubMed ID: 18767063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood-derived mesenchymal stem cells on partially demineralized bone matrix.
    Liu G; Li Y; Sun J; Zhou H; Zhang W; Cui L; Cao Y
    Tissue Eng Part A; 2010 Mar; 16(3):971-82. PubMed ID: 19839720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone formation using novel interconnected porous calcium hydroxyapatite ceramic hybridized with cultured marrow stromal stem cells derived from Green rat.
    Ito Y; Tanaka N; Fujimoto Y; Yasunaga Y; Ishida O; Agung M; Ochi M
    J Biomed Mater Res A; 2004 Jun; 69(3):454-61. PubMed ID: 15127392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.
    Jansen EJ; Sladek RE; Bahar H; Yaffe A; Gijbels MJ; Kuijer R; Bulstra SK; Guldemond NA; Binderman I; Koole LH
    Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.