These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19842115)

  • 1. Human cell culture process capability: a comparison of manual and automated production.
    Liu Y; Hourd P; Chandra A; Williams DJ
    J Tissue Eng Regen Med; 2010 Jan; 4(1):45-54. PubMed ID: 19842115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated, serum-free production of CTX0E03: a therapeutic clinical grade human neural stem cell line.
    Thomas RJ; Hope AD; Hourd P; Baradez M; Miljan EA; Sinden JD; Williams DJ
    Biotechnol Lett; 2009 Aug; 31(8):1167-72. PubMed ID: 19343502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of process quality engineering techniques to improve the understanding of the in vitro processing of stem cells for therapeutic use.
    Thomas RJ; Hourd PC; Williams DJ
    J Biotechnol; 2008 Sep; 136(3-4):148-55. PubMed ID: 18672011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in processing systems for cell and tissue cultures toward therapeutic application.
    Kino-oka M; Taya M
    J Biosci Bioeng; 2009 Oct; 108(4):267-76. PubMed ID: 19716513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue engineering and regenerative medicine: manufacturing challenges.
    Williams DJ; Sebastine IM
    IEE Proc Nanobiotechnol; 2005 Dec; 152(6):207-10. PubMed ID: 16441181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated adherent human cell culture (mesenchymal stem cells).
    Thomas R; Ratcliffe E
    Methods Mol Biol; 2012; 806():393-406. PubMed ID: 22057466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible automation of cell culture and tissue engineering tasks.
    Knoll A; Scherer T; Poggendorf I; Lütkemeyer D; Lehmann J
    Biotechnol Prog; 2004; 20(6):1825-35. PubMed ID: 15575718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microarray-based gene expression analysis as a process characterization tool to establish comparability of complex biological products: scale-up of a whole-cell immunotherapy product.
    Wang M; Senger RS; Paredes C; Banik GG; Lin A; Papoutsakis ET
    Biotechnol Bioeng; 2009 Nov; 104(4):796-808. PubMed ID: 19591186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel automated bioreactor for scalable process optimisation of haematopoietic stem cell culture.
    Ratcliffe E; Glen KE; Workman VL; Stacey AJ; Thomas RJ
    J Biotechnol; 2012 Oct; 161(3):387-90. PubMed ID: 22771559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Culture systems for pluripotent stem cells.
    Ulloa-Montoya F; Verfaillie CM; Hu WS
    J Biosci Bioeng; 2005 Jul; 100(1):12-27. PubMed ID: 16233846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expansion of chondroprogenitor cells on macroporous microcarriers as an alternative to conventional monolayer systems.
    Melero-Martin JM; Dowling MA; Smith M; Al-Rubeai M
    Biomaterials; 2006 May; 27(15):2970-9. PubMed ID: 16455134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal in-vitro expansion of chondroprogenitor cells in monolayer culture.
    Melero-Martin JM; Dowling MA; Smith M; Al-Rubeai M
    Biotechnol Bioeng; 2006 Feb; 93(3):519-33. PubMed ID: 16259002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated maintenance of embryonic stem cell cultures.
    Terstegge S; Laufenberg I; Pochert J; Schenk S; Itskovitz-Eldor J; Endl E; Brüstle O
    Biotechnol Bioeng; 2007 Jan; 96(1):195-201. PubMed ID: 16960892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality.
    Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A
    J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system.
    Koller MR; Manchel I; Maher RJ; Goltry KL; Armstrong RD; Smith AK
    Bone Marrow Transplant; 1998 Apr; 21(7):653-63. PubMed ID: 9578304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automating the expansion process of human skeletal muscle myoblasts with suppression of myotube formation.
    Kino-Oka M; Chowdhury SR; Muneyuki Y; Manabe M; Saito A; Sawa Y; Taya M
    Tissue Eng Part C Methods; 2009 Dec; 15(4):717-28. PubMed ID: 19284306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inkjet printing for high-throughput cell patterning.
    Roth EA; Xu T; Das M; Gregory C; Hickman JJ; Boland T
    Biomaterials; 2004 Aug; 25(17):3707-15. PubMed ID: 15020146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian cell culture scale-up and fed-batch control using automated flow cytometry.
    Sitton G; Srienc F
    J Biotechnol; 2008 Jun; 135(2):174-80. PubMed ID: 18490070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational fluid dynamics for improved bioreactor design and 3D culture.
    Hutmacher DW; Singh H
    Trends Biotechnol; 2008 Apr; 26(4):166-72. PubMed ID: 18261813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of cell culture process changes on endogenous retrovirus expression.
    Brorson K; De Wit C; Hamilton E; Mustafa M; Swann PG; Kiss R; Taticek R; Polastri G; Stein KE; Xu Y
    Biotechnol Bioeng; 2002 Nov; 80(3):257-67. PubMed ID: 12226857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.