BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19842181)

  • 1. A developmental study of enteric neuron migration in the grasshopper using immunological probes.
    Knipp S; Bicker G
    Dev Dyn; 2009 Nov; 238(11):2837-49. PubMed ID: 19842181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide as a regulator of neuronal motility and regeneration in the locust embryo.
    Stern M; Bicker G
    J Insect Physiol; 2010 Aug; 56(8):958-65. PubMed ID: 20361970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria).
    Stern M; Knipp S; Bicker G
    J Comp Neurol; 2007 Mar; 501(1):38-51. PubMed ID: 17206618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An identified set of visceral muscle bands is essential for the guidance of migratory neurons in the enteric nervous system of Manduca sexta.
    Copenhaver PF; Horgan AM; Combes S
    Dev Biol; 1996 Nov; 179(2):412-26. PubMed ID: 8903356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological approaches to nitric oxide signalling during neural development of locusts and other model insects.
    Bicker G
    Arch Insect Biochem Physiol; 2007 Jan; 64(1):43-58. PubMed ID: 17167749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of enteric neuron migration by the gaseous messenger molecules CO and NO.
    Knipp S; Bicker G
    Development; 2009 Jan; 136(1):85-93. PubMed ID: 19019991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonic development of the enteric nervous system of the grasshopper Schistocerca americana.
    Ganfornina MD; Sánchez D; Bastiani MJ
    J Comp Neurol; 1996 Sep; 372(4):581-96. PubMed ID: 8876455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro.
    Hearn CJ; Murphy M; Newgreen D
    Dev Biol; 1998 May; 197(1):93-105. PubMed ID: 9578621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide and cyclic nucleotides are regulators of neuronal migration in an insect embryo.
    Haase A; Bicker G
    Development; 2003 Sep; 130(17):3977-87. PubMed ID: 12874120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of growth cone guidance and motility in the developing grasshopper embryo.
    Isbister CM; O'Connor TP
    J Neurobiol; 2000 Aug; 44(2):271-80. PubMed ID: 10934328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of a neurally related laminin binding protein by neural crest-derived cells that colonize the gut: relationship to the formation of enteric ganglia.
    Pomeranz HD; Sherman DL; Smalheiser NR; Tennyson VM; Gershon MD
    J Comp Neurol; 1991 Nov; 313(4):625-42. PubMed ID: 1838378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The migratory behavior of immature enteric neurons.
    Hao MM; Anderson RB; Kobayashi K; Whitington PM; Young HM
    Dev Neurobiol; 2009 Jan; 69(1):22-35. PubMed ID: 18985707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different isoforms of fasciclin II play distinct roles in the guidance of neuronal migration during insect embryogenesis.
    Wright JW; Copenhaver PF
    Dev Biol; 2000 Sep; 225(1):59-78. PubMed ID: 10964464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for fasciclin II in the guidance of neuronal migration.
    Wright JW; Snyder MA; Schwinof KM; Combes S; Copenhaver PF
    Development; 1999 Jun; 126(14):3217-28. PubMed ID: 10375511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GDNF is a chemoattractant for enteric neural cells.
    Young HM; Hearn CJ; Farlie PG; Canty AJ; Thomas PQ; Newgreen DF
    Dev Biol; 2001 Jan; 229(2):503-16. PubMed ID: 11150245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A delayed role for nitric oxide-sensitive guanylate cyclases in a migratory population of embryonic neurons.
    Wright JW; Schwinof KM; Snyder MA; Copenhaver PF
    Dev Biol; 1998 Dec; 204(1):15-33. PubMed ID: 9851840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia.
    Burns AJ; Champeval D; Le Douarin NM
    Dev Biol; 2000 Mar; 219(1):30-43. PubMed ID: 10677253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colonization of the bowel by neural crest-derived cells re-migrating from foregut backtransplanted to vagal or sacral regions of host embryos.
    Rothman TP; Le Douarin NM; Fontaine-Pérus JC; Gershon MD
    Dev Dyn; 1993 Mar; 196(3):217-33. PubMed ID: 8400406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Appearance of neurons and glia with respect to the wavefront during colonization of the avian gut by neural crest cells.
    Conner PJ; Focke PJ; Noden DM; Epstein ML
    Dev Dyn; 2003 Jan; 226(1):91-8. PubMed ID: 12508228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell adhesion molecule L1 affects the rate of differentiation of enteric neurons in the developing gut.
    Turner KN; Schachner M; Anderson RB
    Dev Dyn; 2009 Mar; 238(3):708-15. PubMed ID: 19235728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.