These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 19842670)
1. A background level of oxygen-containing aromatics for synthetic control of carbon nanotube structure. Futaba DN; Goto J; Yasuda S; Yamada T; Yumura M; Hata K J Am Chem Soc; 2009 Nov; 131(44):15992-3. PubMed ID: 19842670 [TBL] [Abstract][Full Text] [Related]
2. Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. Zhang Y; Zou G; Doorn SK; Htoon H; Stan L; Hawley ME; Sheehan CJ; Zhu Y; Jia Q ACS Nano; 2009 Aug; 3(8):2157-62. PubMed ID: 19640000 [TBL] [Abstract][Full Text] [Related]
3. Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates. Liu X; Bigioni TP; Xu Y; Cassell AM; Cruden BA J Phys Chem B; 2006 Oct; 110(41):20102-6. PubMed ID: 17034181 [TBL] [Abstract][Full Text] [Related]
4. Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst. Meshot ER; Plata DL; Tawfick S; Zhang Y; Verploegen EA; Hart AJ ACS Nano; 2009 Sep; 3(9):2477-86. PubMed ID: 19691287 [TBL] [Abstract][Full Text] [Related]
5. Catalyst size effects on the growth of single-walled nanotubes in neutral and plasma systems. Tam E; Ostrikov KK Nanotechnology; 2009 Sep; 20(37):375603. PubMed ID: 19706955 [TBL] [Abstract][Full Text] [Related]
6. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Hata K; Futaba DN; Mizuno K; Namai T; Yumura M; Iijima S Science; 2004 Nov; 306(5700):1362-4. PubMed ID: 15550668 [TBL] [Abstract][Full Text] [Related]
7. Orthogonal orientation control of carbon nanotube growth. Zhou W; Ding L; Yang S; Liu J J Am Chem Soc; 2010 Jan; 132(1):336-41. PubMed ID: 20000705 [TBL] [Abstract][Full Text] [Related]
8. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Yamada T; Namai T; Hata K; Futaba DN; Mizuno K; Fan J; Yudasaka M; Yumura M; Iijima S Nat Nanotechnol; 2006 Nov; 1(2):131-6. PubMed ID: 18654165 [TBL] [Abstract][Full Text] [Related]
9. Direct growth of aligned carbon nanotubes on bulk metals. Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161 [TBL] [Abstract][Full Text] [Related]
10. Abrasion as a catalyst deposition technique for carbon nanotube growth. Alvarez NT; Pint CL; Hauge RH; Tour JM J Am Chem Soc; 2009 Oct; 131(41):15041-8. PubMed ID: 19764728 [TBL] [Abstract][Full Text] [Related]
11. A two-step shearing strategy to disperse long carbon nanotubes from vertically aligned multiwalled carbon nanotube arrays for transparent conductive films. Xu GH; Zhang Q; Huang JQ; Zhao MQ; Zhou WP; Wei F Langmuir; 2010 Feb; 26(4):2798-804. PubMed ID: 19817403 [TBL] [Abstract][Full Text] [Related]
12. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets. Pint CL; Xu YQ; Pasquali M; Hauge RH ACS Nano; 2008 Sep; 2(9):1871-8. PubMed ID: 19206427 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. Hiraoka T; Yamada T; Hata K; Futaba DN; Kurachi H; Uemura S; Yumura M; Iijima S J Am Chem Soc; 2006 Oct; 128(41):13338-9. PubMed ID: 17031929 [TBL] [Abstract][Full Text] [Related]
14. Iridescence of patterned carbon nanotube forests on flexible substrates: from darkest materials to colorful films. Hsieh KC; Tsai TY; Wan D; Chen HL; Tai NH ACS Nano; 2010 Mar; 4(3):1327-36. PubMed ID: 20184384 [TBL] [Abstract][Full Text] [Related]
16. Control of carbon capping for regrowth of aligned carbon nanotubes. AuBuchon JF; Chen LH; Jin S J Phys Chem B; 2005 Apr; 109(13):6044-8. PubMed ID: 16851663 [TBL] [Abstract][Full Text] [Related]
17. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221 [TBL] [Abstract][Full Text] [Related]
18. 84% catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach. Futaba DN; Hata K; Namai T; Yamada T; Mizuno K; Hayamizu Y; Yumura M; Iijima S J Phys Chem B; 2006 Apr; 110(15):8035-8. PubMed ID: 16610904 [TBL] [Abstract][Full Text] [Related]
19. Patterned carbon nanotube growth using an electron beam sensitive direct writable catalyst. Patole SP; Patole AS; Rhen DS; Shahid M; Min H; Kang DJ; Kim TH; Yoo JB Nanotechnology; 2009 Aug; 20(31):315302. PubMed ID: 19597250 [TBL] [Abstract][Full Text] [Related]
20. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]