BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1297 related articles for article (PubMed ID: 19842697)

  • 1. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna.
    Aratani N; Kim D; Osuka A
    Acc Chem Res; 2009 Dec; 42(12):1922-34. PubMed ID: 19842697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porphyrin boxes constructed by homochiral self-sorting assembly: optical separation, exciton coupling, and efficient excitation energy migration.
    Hwang IW; Kamada T; Ahn TK; Ko DM; Nakamura T; Tsuda A; Osuka A; Kim D
    J Am Chem Soc; 2004 Dec; 126(49):16187-98. PubMed ID: 15584755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directly meso-meso linked porphyrin rings: synthesis, characterization, and efficient excitation energy hopping.
    Nakamura Y; Hwang IW; Aratani N; Ahn TK; Ko DM; Takagi A; Kawai T; Matsumoto T; Kim D; Osuka A
    J Am Chem Soc; 2005 Jan; 127(1):236-46. PubMed ID: 15631473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient excitation energy transfer in long meso-meso linked Zn(II) porphyrin arrays bearing a 5,15-bisphenylethynylated Zn(II) porphyrin acceptor.
    Aratani N; Cho HS; Ahn TK; Cho S; Kim D; Sumi H; Osuka A
    J Am Chem Soc; 2003 Aug; 125(32):9668-81. PubMed ID: 12904033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation energy transport processes of porphyrin monomer, dimer, cyclic trimer, and hexamer probed by ultrafast fluorescence anisotropy decay.
    Cho HS; Rhee H; Song JK; Min CK; Takase M; Aratani N; Cho S; Osuka A; Joo T; Kim D
    J Am Chem Soc; 2003 May; 125(19):5849-60. PubMed ID: 12733926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic porphyrin arrays as artificial photosynthetic antenna: synthesis and excitation energy transfer.
    Nakamura Y; Aratani N; Osuka A
    Chem Soc Rev; 2007 Jun; 36(6):831-45. PubMed ID: 17534471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural dependence on excitation energy migration processes in artificial light harvesting cyclic zinc(II) porphyrin arrays.
    Yoon MC; Cho S; Kim P; Hori T; Aratani N; Osuka A; Kim D
    J Phys Chem B; 2009 Nov; 113(45):15074-82. PubMed ID: 19807140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High fidelity self-sorting assembling of meso-cinchomeronimide appended meso-meso linked Zn(II) diporphyrins.
    Kamada T; Aratani N; Ikeda T; Shibata N; Higuchi Y; Wakamiya A; Yamaguchi S; Kim KS; Yoon ZS; Kim D; Osuka A
    J Am Chem Soc; 2006 Jun; 128(23):7670-8. PubMed ID: 16756324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation energy migration processes in self-assembled porphyrin boxes constructed by conjugated porphyrin dimers.
    Kim P; Lim JM; Yoon MC; Aimi J; Aida T; Tsuda A; Kim D
    J Phys Chem B; 2010 Jul; 114(28):9157-64. PubMed ID: 20590076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directly linked porphyrin arrays with tunable excitonic interactions.
    Kim D; Osuka A
    Acc Chem Res; 2004 Oct; 37(10):735-45. PubMed ID: 15491120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large porphyrin squares from the self-assembly of meso-triazole-appended L-shaped meso-meso-linked Zn(II)-triporphyrins: synthesis and efficient energy transfer.
    Maeda C; Kim P; Cho S; Park JK; Lim JM; Kim D; Vura-Weis J; Wasielewski MR; Shinokubo H; Osuka A
    Chemistry; 2010 May; 16(17):5052-61. PubMed ID: 20349471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitonic coupling strength and coherence length in the singlet and triplet excited states of meso-meso directly linked Zn(II)porphyrin arrays.
    Ha JH; Cho HS; Song JK; Kim D; Aratani N; Osuka A
    Chemphyschem; 2004 Jan; 5(1):57-67. PubMed ID: 14999844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Giant porphyrin wheels with large electronic coupling as models of light-harvesting photosynthetic antenna.
    Hori T; Aratani N; Takagi A; Matsumoto T; Kawai T; Yoon MC; Yoon ZS; Cho S; Kim D; Osuka A
    Chemistry; 2006 Feb; 12(5):1319-27. PubMed ID: 16400698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation energy transfer in multiporphyrin arrays with cyclic architectures: towards artificial light-harvesting antenna complexes.
    Yang J; Yoon MC; Yoo H; Kim P; Kim D
    Chem Soc Rev; 2012 Jul; 41(14):4808-26. PubMed ID: 22659941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of nanometer-scale porphyrin wheels of variable size.
    Hori T; Peng X; Aratani N; Takagi A; Matsumoto T; Kawai T; Yoon ZS; Yoon MC; Yang J; Kim D; Osuka A
    Chemistry; 2008; 14(2):582-95. PubMed ID: 17985338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation energy migration processes in various multi-porphyrin assemblies.
    Yang J; Kim D
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3802-18. PubMed ID: 22753827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation-energy migration in self-assembled cyclic zinc(II)-porphyrin arrays: a close mimicry of a natural light-harvesting system.
    Hwang IW; Park M; Ahn TK; Yoon ZS; Ko DM; Kim D; Ito F; Ishibashi Y; Khan SR; Nagasawa Y; Miyasaka H; Ikeda C; Takahashi R; Ogawa K; Satake A; Kobuke Y
    Chemistry; 2005 Jun; 11(12):3753-61. PubMed ID: 15827988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic antenna-reaction center mimicry: sequential energy- and electron transfer in a self-assembled supramolecular triad composed of boron dipyrrin, zinc porphyrin and fullerene.
    Maligaspe E; Tkachenko NV; Subbaiyan NK; Chitta R; Zandler ME; Lemmetyinen H; D'Souza F
    J Phys Chem A; 2009 Jul; 113(30):8478-89. PubMed ID: 19580310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directly linked porphyrin arrays.
    Aratani N; Osuka A
    Chem Rec; 2003; 3(4):225-34. PubMed ID: 14595831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 65.