BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

600 related articles for article (PubMed ID: 19843095)

  • 1. Evidence that nitric oxide inhibits vascular inflammation and superoxide production via a p47phox-dependent mechanism in mice.
    Harrison CB; Drummond GR; Sobey CG; Selemidis S
    Clin Exp Pharmacol Physiol; 2010 Apr; 37(4):429-34. PubMed ID: 19843095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium channel blockades exhibit anti-inflammatory and antioxidative effects by augmentation of endothelial nitric oxide synthase and the inhibition of angiotensin converting enzyme in the N(G)-nitro-L-arginine methyl ester-induced hypertensive rat aorta: vasoprotective effects beyond the blood pressure-lowering effects of amlodipine and manidipine.
    Toba H; Nakagawa Y; Miki S; Shimizu T; Yoshimura A; Inoue R; Asayama J; Kobara M; Nakata T
    Hypertens Res; 2005 Aug; 28(8):689-700. PubMed ID: 16392774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regression of atherosclerosis by amlodipine via anti-inflammatory and anti-oxidative stress actions.
    Yoshii T; Iwai M; Li Z; Chen R; Ide A; Fukunaga S; Oshita A; Mogi M; Higaki J; Horiuchi M
    Hypertens Res; 2006 Jun; 29(6):457-66. PubMed ID: 16940709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes.
    Bitar MS; Wahid S; Mustafa S; Al-Saleh E; Dhaunsi GS; Al-Mulla F
    Eur J Pharmacol; 2005 Mar; 511(1):53-64. PubMed ID: 15777779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ghrelin inhibits vascular superoxide production in spontaneously hypertensive rats.
    Kawczynska-Drozdz A; Olszanecki R; Jawien J; Brzozowski T; Pawlik WW; Korbut R; Guzik TJ
    Am J Hypertens; 2006 Jul; 19(7):764-7. PubMed ID: 16814134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells.
    Selemidis S; Dusting GJ; Peshavariya H; Kemp-Harper BK; Drummond GR
    Cardiovasc Res; 2007 Jul; 75(2):349-58. PubMed ID: 17568572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical role for p47phox in renin-angiotensin system activation and blood pressure regulation.
    Grote K; Ortmann M; Salguero G; Doerries C; Landmesser U; Luchtefeld M; Brandes RP; Gwinner W; Tschernig T; Brabant EG; Klos A; Schaefer A; Drexler H; Schieffer B
    Cardiovasc Res; 2006 Aug; 71(3):596-605. PubMed ID: 16843452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposing roles of p47phox in basal versus angiotensin II-stimulated alterations in vascular O2- production, vascular tone, and mitogen-activated protein kinase activation.
    Li JM; Wheatcroft S; Fan LM; Kearney MT; Shah AM
    Circulation; 2004 Mar; 109(10):1307-13. PubMed ID: 14993144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury.
    De Ciuceis C; Amiri F; Brassard P; Endemann DH; Touyz RM; Schiffrin EL
    Arterioscler Thromb Vasc Biol; 2005 Oct; 25(10):2106-13. PubMed ID: 16100037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction.
    Doerries C; Grote K; Hilfiker-Kleiner D; Luchtefeld M; Schaefer A; Holland SM; Sorrentino S; Manes C; Schieffer B; Drexler H; Landmesser U
    Circ Res; 2007 Mar; 100(6):894-903. PubMed ID: 17332431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells.
    Duerrschmidt N; Stielow C; Muller G; Pagano PJ; Morawietz H
    J Physiol; 2006 Oct; 576(Pt 2):557-67. PubMed ID: 16873416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmented superoxide production by Nox2-containing NADPH oxidase causes cerebral artery dysfunction during hypercholesterolemia.
    Miller AA; De Silva TM; Judkins CP; Diep H; Drummond GR; Sobey CG
    Stroke; 2010 Apr; 41(4):784-9. PubMed ID: 20167907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ramipril treatment protects against nitrate-induced oxidative stress in eNOS-/- mice: An implication of the NADPH oxidase pathway.
    Otto A; Fontaine J; Berkenboom G
    J Cardiovasc Pharmacol; 2006 Jul; 48(1):842-9. PubMed ID: 16891913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hyperhomocystinemia and hypertension on endothelial function in methylenetetrahydrofolate reductase-deficient mice.
    Virdis A; Iglarz M; Neves MF; Amiri F; Touyz RM; Rozen R; Schiffrin EL
    Arterioscler Thromb Vasc Biol; 2003 Aug; 23(8):1352-7. PubMed ID: 12829522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ets-1 is a critical transcriptional regulator of reactive oxygen species and p47(phox) gene expression in response to angiotensin II.
    Ni W; Zhan Y; He H; Maynard E; Balschi JA; Oettgen P
    Circ Res; 2007 Nov; 101(10):985-94. PubMed ID: 17872466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelin mediates superoxide production and vasoconstriction through activation of NADPH oxidase and uncoupled nitric-oxide synthase in the rat aorta.
    Loomis ED; Sullivan JC; Osmond DA; Pollock DM; Pollock JS
    J Pharmacol Exp Ther; 2005 Dec; 315(3):1058-64. PubMed ID: 16144972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic (-)-epicatechin improves vascular oxidative and inflammatory status but not hypertension in chronic nitric oxide-deficient rats.
    Gómez-Guzmán M; Jiménez R; Sánchez M; Romero M; O'Valle F; Lopez-Sepulveda R; Quintela AM; Galindo P; Zarzuelo MJ; Bailón E; Delpón E; Perez-Vizcaino F; Duarte J
    Br J Nutr; 2011 Nov; 106(9):1337-48. PubMed ID: 21910946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity.
    Li R; Wang WQ; Zhang H; Yang X; Fan Q; Christopher TA; Lopez BL; Tao L; Goldstein BJ; Gao F; Ma XL
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1703-8. PubMed ID: 17895290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic N-acetylcysteine administration prevents development of hypertension in N(omega)-nitro-L-arginine methyl ester-treated rats: the role of reactive oxygen species.
    Rauchová H; Pechánová O; Kunes J; Vokurková M; Dobesová Z; Zicha J
    Hypertens Res; 2005 May; 28(5):475-82. PubMed ID: 16156512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The PPARgamma ligand, rosiglitazone, reduces vascular oxidative stress and NADPH oxidase expression in diabetic mice.
    Hwang J; Kleinhenz DJ; Rupnow HL; Campbell AG; Thulé PM; Sutliff RL; Hart CM
    Vascul Pharmacol; 2007 Jun; 46(6):456-62. PubMed ID: 17337254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.