BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19843244)

  • 1. Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice.
    Murillo-Cuesta S; Contreras J; Zurita E; Cediel R; Cantero M; Varela-Nieto I; Montoliu L
    Pigment Cell Melanoma Res; 2010 Feb; 23(1):72-83. PubMed ID: 19843244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of strial melanin coincides with age-associated marginal cell loss and endocochlear potential decline.
    Ohlemiller KK; Rice ME; Lett JM; Gagnon PM
    Hear Res; 2009 Mar; 249(1-2):1-14. PubMed ID: 19141317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of an age-related hearing loss gene (Ahl) on noise-induced hearing loss and cochlear damage from low-frequency noise.
    Harding GW; Bohne BA; Vos JD
    Hear Res; 2005 Jun; 204(1-2):90-100. PubMed ID: 15925194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic influences on susceptibility of the auditory system to aging and environmental factors.
    Li HS
    Scand Audiol Suppl; 1992; 36():1-39. PubMed ID: 1488615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectopic expression of tyrosine hydroxylase in the pigmented epithelium rescues the retinal abnormalities and visual function common in albinos in the absence of melanin.
    Lavado A; Jeffery G; Tovar V; de la Villa P; Montoliu L
    J Neurochem; 2006 Feb; 96(4):1201-11. PubMed ID: 16445854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease.
    Masuda M; Tanaka KF; Kanzaki S; Wakabayashi K; Oishi N; Suzuki T; Ikenaka K; Ogawa K
    Neurosci Res; 2008 Sep; 62(1):15-24. PubMed ID: 18602179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine mapping of Ahl3 affecting both age-related and noise-induced hearing loss.
    Morita Y; Hirokawa S; Kikkawa Y; Nomura T; Yonekawa H; Shiroishi T; Takahashi S; Kominami R
    Biochem Biophys Res Commun; 2007 Mar; 355(1):117-21. PubMed ID: 17291455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosinase: a developmentally specific major determinant of peripheral dopamine.
    Eisenhofer G; Tian H; Holmes C; Matsunaga J; Roffler-Tarlov S; Hearing VJ
    FASEB J; 2003 Jul; 17(10):1248-55. PubMed ID: 12832289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and differentiation of sensorineural hearing loss in mice using auditory steady-state responses and transient auditory brainstem responses.
    Pauli-Magnus D; Hoch G; Strenzke N; Anderson S; Jentsch TJ; Moser T
    Neuroscience; 2007 Nov; 149(3):673-84. PubMed ID: 17869440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory evoked potentials for the assessment of noise induced hearing loss.
    Fabiani M; Mattioni A; Saponara M; Cordier A
    Scand Audiol Suppl; 1998; 48():147-53. PubMed ID: 9505307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prostaglandin E receptor subtype EP4 agonist protects cochleae against noise-induced trauma.
    Hori R; Nakagawa T; Sugimoto Y; Sakamoto T; Yamamoto N; Hamaguchi K; Ito J
    Neuroscience; 2009 Jun; 160(4):813-9. PubMed ID: 19303430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive effects of aging with noise induced hearing loss.
    Miller JM; Dolan DF; Raphael Y; Altschuler RA
    Scand Audiol Suppl; 1998; 48():53-61. PubMed ID: 9505298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss.
    Kopke RD; Coleman JK; Liu J; Campbell KC; Riffenburgh RH
    Laryngoscope; 2002 Sep; 112(9):1515-32. PubMed ID: 12352659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal cochlear function in mdx and mdx(Cv3) Duchenne muscular dystrophy mouse models.
    Pillers DA; Duncan NM; Dwinnell SJ; Rash SM; Kempton JB; Trune DR
    Laryngoscope; 1999 Aug; 109(8):1310-2. PubMed ID: 10443839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased vulnerability of auditory system to noise exposure in mdx mice.
    Chen TJ; Chen SS; Wang DC; Hsieh YL
    Laryngoscope; 2002 Mar; 112(3):520-5. PubMed ID: 12148865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-Acetyl L-cysteine does not protect against premature age-related hearing loss in C57BL/6J mice: a pilot study.
    Davis RR; Kuo MW; Stanton SG; Canlon B; Krieg E; Alagramam KN
    Hear Res; 2007 Apr; 226(1-2):203-8. PubMed ID: 16930891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of exposing DBA/2J mice to a high-frequency augmented acoustic environment on the cochlea and anteroventral cochlear nucleus.
    Willott JF; Bosch JV; Shimizu T; Ding DL
    Hear Res; 2006; 216-217():138-45. PubMed ID: 16497456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of X-linked inhibitor of apoptosis protein protects against noise-induced hearing loss in mice.
    Wang J; Tymczyszyn N; Yu Z; Yin S; Bance M; Robertson GS
    Gene Ther; 2011 Jun; 18(6):560-8. PubMed ID: 21228883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of mouse models to understanding of age- and noise-related hearing loss.
    Ohlemiller KK
    Brain Res; 2006 May; 1091(1):89-102. PubMed ID: 16631134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensorineural hearing loss in insulin-like growth factor I-null mice: a new model of human deafness.
    Cediel R; Riquelme R; Contreras J; Díaz A; Varela-Nieto I
    Eur J Neurosci; 2006 Jan; 23(2):587-90. PubMed ID: 16420467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.