These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19843468)

  • 1. Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy.
    Yamamoto D; Nagura N; Omote S; Taniguchi M; Ando T
    Biophys J; 2009 Oct; 97(8):2358-67. PubMed ID: 19843468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed atomic force microscopy techniques for observing dynamic biomolecular processes.
    Yamamoto D; Uchihashi T; Kodera N; Yamashita H; Nishikori S; Ogura T; Shibata M; Ando T
    Methods Enzymol; 2010; 475():541-64. PubMed ID: 20627170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimum Substrates for Imaging Biological Molecules with High-Speed Atomic Force Microscopy.
    Uchihashi T; Watanabe H; Kodera N
    Methods Mol Biol; 2018; 1814():159-179. PubMed ID: 29956232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies.
    Umakoshi T; Fukuda S; Iino R; Uchihashi T; Ando T
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129325. PubMed ID: 30890438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEGylated surfaces for the study of DNA-protein interactions by atomic force microscopy.
    Akpinar B; Haynes PJ; Bell NAW; Brunner K; Pyne ALB; Hoogenboom BW
    Nanoscale; 2019 Nov; 11(42):20072-20080. PubMed ID: 31612171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction to Atomic Force Microscopy (AFM) in Biology.
    Kreplak L
    Curr Protoc Protein Sci; 2016 Aug; 85():17.7.1-17.7.21. PubMed ID: 27479503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional protein crystals on a solid substrate: effect of surface ligand concentration.
    Lou C; Wang Z; Wang SW
    Langmuir; 2007 Sep; 23(19):9752-9. PubMed ID: 17691830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing protein-protein interactions in real time.
    Viani MB; Pietrasanta LI; Thompson JB; Chand A; Gebeshuber IC; Kindt JH; Richter M; Hansma HG; Hansma PK
    Nat Struct Biol; 2000 Aug; 7(8):644-7. PubMed ID: 10932247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed atomic force microscopy imaging.
    Noshiro D; Ando T
    Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1749):. PubMed ID: 29735734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time imaging of DNA-streptavidin complex formation in solution using a high-speed atomic force microscope.
    Kobayashi M; Sumitomo K; Torimitsu K
    Ultramicroscopy; 2007; 107(2-3):184-90. PubMed ID: 16949754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging and spectroscopic comparison of multi-step methods to form DNA arrays based on the biotin-streptavidin system.
    Gajos K; Petrou P; Budkowski A; Awsiuk K; Bernasik A; Misiakos K; Rysz J; Raptis I; Kakabakos S
    Analyst; 2015 Feb; 140(4):1127-39. PubMed ID: 25535629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to orient the functional GroEL-SR1 mutant for atomic force microscopy investigations.
    Schiener J; Witt S; Hayer-Hartl M; Guckenberger R
    Biochem Biophys Res Commun; 2005 Mar; 328(2):477-83. PubMed ID: 15694372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions.
    Herruzo ET; Asakawa H; Fukuma T; Garcia R
    Nanoscale; 2013 Apr; 5(7):2678-85. PubMed ID: 23235926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of protein adsorption to muscovite mica by monovalent cations.
    Czajkowsky DM; Shao Z
    J Microsc; 2003 Jul; 211(Pt 1):1-7. PubMed ID: 12839545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembling and imaging of his-tag green fluorescent protein on mica surfaces studied by atomic force microscopy and fluorescence microscopy.
    Liu Z; Zu Y; Fu Y; Zhang Z; Meng R
    Microsc Res Tech; 2008 Nov; 71(11):802-9. PubMed ID: 18623179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction to atomic force microscopy (AFM) in biology.
    Goldsbury CS; Scheuring S; Kreplak L
    Curr Protoc Protein Sci; 2009 Nov; Chapter 17():17.7.1-17.7.19. PubMed ID: 19937721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating fibrillar aggregates of Tau protein by atomic force microscopy.
    Wegmann S; Muller DJ; Mandelkow E
    Methods Mol Biol; 2012; 849():169-83. PubMed ID: 22528090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supported lipid bilayers as effective substrates for atomic force microscopy.
    Czajkowsky DM; Shao Z
    Methods Cell Biol; 2002; 68():231-41. PubMed ID: 12053732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WGA-QD probe-based AFM detects WGA-binding sites on cell surface and WGA-induced rigidity alternation.
    Wang X; He D; Cai J; Chen T; Zou F; Li Y; Wu Y; Chen ZW; Chen Y
    Biochem Biophys Res Commun; 2009 Feb; 379(2):335-40. PubMed ID: 19103166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual function of protein confinement in chaperonin-assisted protein folding.
    Brinker A; Pfeifer G; Kerner MJ; Naylor DJ; Hartl FU; Hayer-Hartl M
    Cell; 2001 Oct; 107(2):223-33. PubMed ID: 11672529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.