These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 19843469)

  • 1. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition.
    Padilla-Parra S; Audugé N; Lalucque H; Mevel JC; Coppey-Moisan M; Tramier M
    Biophys J; 2009 Oct; 97(8):2368-76. PubMed ID: 19843469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.
    Goedhart J; Vermeer JE; Adjobo-Hermans MJ; van Weeren L; Gadella TW
    PLoS One; 2007 Oct; 2(10):e1011. PubMed ID: 17925859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells.
    Padilla-Parra S; Audugé N; Coppey-Moisan M; Tramier M
    Biophys J; 2008 Sep; 95(6):2976-88. PubMed ID: 18539634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay.
    Bayle V; Nussaume L; Bhat RA
    Plant Physiol; 2008 Sep; 148(1):51-60. PubMed ID: 18621983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells.
    Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M
    Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence lifetime readouts of Troponin-C-based calcium FRET sensors: a quantitative comparison of CFP and mTFP1 as donor fluorophores.
    Laine R; Stuckey DW; Manning H; Warren SC; Kennedy G; Carling D; Dunsby C; Sardini A; French PM
    PLoS One; 2012; 7(11):e49200. PubMed ID: 23152874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair.
    Albertazzi L; Arosio D; Marchetti L; Ricci F; Beltram F
    Photochem Photobiol; 2009; 85(1):287-97. PubMed ID: 18764891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FLIM-FRET Protein-Protein Interaction Assay.
    Bonilla PA; Shrestha R
    Methods Mol Biol; 2024; 2797():261-269. PubMed ID: 38570466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic FLIM-based FRET experiments.
    Martin KJ; McGhee EJ; Schwarz JP; Drysdale M; Brachmann SM; Stucke V; Sansom OJ; Anderson KI
    PLoS One; 2018; 13(1):e0183585. PubMed ID: 29293509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen.
    McCullock TW; MacLean DM; Kammermeier PJ
    PLoS One; 2020; 15(2):e0219886. PubMed ID: 32023253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions.
    Peter M; Ameer-Beg SM; Hughes MK; Keppler MD; Prag S; Marsh M; Vojnovic B; Ng T
    Biophys J; 2005 Feb; 88(2):1224-37. PubMed ID: 15531633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the spectral analysis of Fluorescence Resonance Energy Transfer in live cells: application to interferon receptors and Janus kinases.
    Krause CD; Digioia G; Izotova LS; Pestka S
    Cytokine; 2013 Oct; 64(1):272-85. PubMed ID: 23796694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of FRET Spectrometry Using Temporally Resolved Fluorescence: A Feasibility Study.
    Trujillo J; Khan AS; Adhikari DP; Stoneman MR; Chacko JV; Eliceiri KW; Raicu V
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP.
    Ganesan S; Ameer-Beg SM; Ng TT; Vojnovic B; Wouters FS
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4089-94. PubMed ID: 16537489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein.
    Millington M; Grindlay GJ; Altenbach K; Neely RK; Kolch W; Bencina M; Read ND; Jones AC; Dryden DT; Magennis SW
    Biophys Chem; 2007 May; 127(3):155-64. PubMed ID: 17336446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2.
    Mastop M; Bindels DS; Shaner NC; Postma M; Gadella TWJ; Goedhart J
    Sci Rep; 2017 Sep; 7(1):11999. PubMed ID: 28931898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.
    Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J
    Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs.
    Visser AJ; Laptenok SP; Visser NV; van Hoek A; Birch DJ; Brochon JC; Borst JW
    Eur Biophys J; 2010 Jan; 39(2):241-53. PubMed ID: 19693494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence resonance energy transfer-based stoichiometry in living cells.
    Hoppe A; Christensen K; Swanson JA
    Biophys J; 2002 Dec; 83(6):3652-64. PubMed ID: 12496132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins.
    Laviv T; Kim BB; Chu J; Lam AJ; Lin MZ; Yasuda R
    Nat Methods; 2016 Dec; 13(12):989-992. PubMed ID: 27798609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.