These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 19843982)
1. Modeling the frequency dependence of the electrical properties of the live human skull. Tang C; You F; Cheng G; Gao D; Fu F; Dong X Physiol Meas; 2009 Dec; 30(12):1293-301. PubMed ID: 19843982 [TBL] [Abstract][Full Text] [Related]
2. Correlation between structure and resistivity variations of the live human skull. Tang C; You F; Cheng G; Gao D; Fu F; Yang G; Dong X IEEE Trans Biomed Eng; 2008 Sep; 55(9):2286-92. PubMed ID: 18713698 [TBL] [Abstract][Full Text] [Related]
3. Image reconstruction incorporated with the skull inhomogeneity for electrical impedance tomography. Ni A; Dong X; Yang G; Fu F; Tang C Comput Med Imaging Graph; 2008 Jul; 32(5):409-15. PubMed ID: 18501557 [TBL] [Abstract][Full Text] [Related]
4. In vivo measurement of the brain and skull resistivities using an EIT-based method and the combined analysis of SEF/SEP data. Gonçalves S; de Munck JC; Verbunt JP; Heethaar RM; da Silva FH IEEE Trans Biomed Eng; 2003 Sep; 50(9):1124-8. PubMed ID: 12943281 [TBL] [Abstract][Full Text] [Related]
5. Probabilistic forward model for electroencephalography source analysis. Plis SM; George JS; Jun SC; Ranken DM; Volegov PL; Schmidt DM Phys Med Biol; 2007 Sep; 52(17):5309-27. PubMed ID: 17762088 [TBL] [Abstract][Full Text] [Related]
6. Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues. Halter RJ; Hartov A; Paulsen KD; Schned A; Heaney J Physiol Meas; 2008 Jun; 29(6):S111-23. PubMed ID: 18544804 [TBL] [Abstract][Full Text] [Related]
7. Body composition modeling in the calf using an equivalent circuit model of multi-frequency bioimpedance analysis. Zhu F; Leonard EF; Levin NW Physiol Meas; 2005 Apr; 26(2):S133-43. PubMed ID: 15798226 [TBL] [Abstract][Full Text] [Related]
8. [The complex impedance frequency response and the equivalent circuit model of human brain]. Wu X; Dong X; Qin M; Fu F; You F; Liu R; Shi X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):500-3. PubMed ID: 14565024 [TBL] [Abstract][Full Text] [Related]
9. Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head. Abascal JF; Arridge SR; Atkinson D; Horesh R; Fabrizi L; De Lucia M; Horesh L; Bayford RH; Holder DS Neuroimage; 2008 Nov; 43(2):258-68. PubMed ID: 18694835 [TBL] [Abstract][Full Text] [Related]
10. Direct reconstruction of tissue parameters from differential multifrequency EIT in vivo. Mayer M; Brunner P; Merwa R; Smolle-Jüttner FM; Maier A; Scharfetter H Physiol Meas; 2006 May; 27(5):S93-101. PubMed ID: 16636423 [TBL] [Abstract][Full Text] [Related]
11. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. Haueisen J; Ramon C; Eiselt M; Brauer H; Nowak H IEEE Trans Biomed Eng; 1997 Aug; 44(8):727-35. PubMed ID: 9254986 [TBL] [Abstract][Full Text] [Related]
12. Analytical solutions of electric potential and impedance for a multilayered spherical volume conductor excited by time-harmonic electric current source: application in brain EIT. Xiao C; Lei Y Phys Med Biol; 2005 Jun; 50(11):2663-74. PubMed ID: 15901961 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of the shape of conductivity spectra using differential multi-frequency magnetic induction tomography. Brunner P; Merwa R; Missner A; Rosell J; Hollaus K; Scharfetter H Physiol Meas; 2006 May; 27(5):S237-48. PubMed ID: 16636414 [TBL] [Abstract][Full Text] [Related]
14. A new head phantom with realistic shape and spatially varying skull resistivity distribution. Li JB; Tang C; Dai M; Liu G; Shi XT; Yang B; Xu CH; Fu F; You FS; Tang MX; Dong XZ IEEE Trans Biomed Eng; 2014 Feb; 61(2):254-63. PubMed ID: 24196845 [TBL] [Abstract][Full Text] [Related]
15. Effect of skull resistivity on the spatial resolutions of EEG and MEG. Malmivuo JA; Suihko VE IEEE Trans Biomed Eng; 2004 Jul; 51(7):1276-80. PubMed ID: 15248545 [TBL] [Abstract][Full Text] [Related]
16. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography. Hua P; Woo EJ; Webster JG; Tompkins WJ IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870 [TBL] [Abstract][Full Text] [Related]
17. Determination of head conductivity frequency response in vivo with optimized EIT-EEG. Dabek J; Kalogianni K; Rotgans E; van der Helm FCT; Kwakkel G; van Wegen EEH; Daffertshofer A; de Munck JC Neuroimage; 2016 Feb; 127():484-495. PubMed ID: 26589336 [TBL] [Abstract][Full Text] [Related]
18. Dielectric properties of biological tissue: variation with age. Gabriel C Bioelectromagnetics; 2005; Suppl 7():S12-8. PubMed ID: 16142779 [TBL] [Abstract][Full Text] [Related]
19. Accounting for hardware imperfections in EIT image reconstruction algorithms. Hartinger AE; Gagnon H; Guardo R Physiol Meas; 2007 Jul; 28(7):S13-27. PubMed ID: 17664631 [TBL] [Abstract][Full Text] [Related]
20. Impedance spectroscopy of human erythrocytes: system calibration and nonlinear modeling. Bao JZ; Davis CC; Schmukler RE IEEE Trans Biomed Eng; 1993 Apr; 40(4):364-78. PubMed ID: 8375873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]