These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19843990)

  • 1. Evidence of space charge regions within semiconductor nanowires from Kelvin probe force microscopy.
    Narváez AC; Chiaramonte T; Vicaro KO; Clerici JH; Cotta MA
    Nanotechnology; 2009 Nov; 20(46):465705. PubMed ID: 19843990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. III-V semiconductor nanowire growth: does arsenic diffuse through the metal nanoparticle catalyst?
    Tizei LH; Chiaramonte T; Ugarte D; Cotta MA
    Nanotechnology; 2009 Jul; 20(27):275604. PubMed ID: 19531855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy.
    Vinaji S; Lochthofen A; Mertin W; Regolin I; Gutsche C; Prost W; Tegude FJ; Bacher G
    Nanotechnology; 2009 Sep; 20(38):385702. PubMed ID: 19713586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current and potential characterization on InAs nanowires by contact-mode atomic force microscopy and Kelvin probe force microscopy.
    On S; Takeuchi M; Takahashi T
    Ultramicroscopy; 2002 May; 91(1-4):127-32. PubMed ID: 12211460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of surface topography on Kelvin probe force microscopy.
    Sadewasser S; Leendertz C; Streicher F; Lux-Steiner MCh
    Nanotechnology; 2009 Dec; 20(50):505503. PubMed ID: 19934483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of interface abruptness and material properties in catalytically grown III-V nanowires: exploiting plasmon chemical shift.
    Tizei LH; Chiaramonte T; Cotta MA; Ugarte D
    Nanotechnology; 2010 Jul; 21(29):295701. PubMed ID: 20585172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy.
    Sinensky AK; Belcher AM
    Nat Nanotechnol; 2007 Oct; 2(10):653-9. PubMed ID: 18654392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High density germanium nanowire assemblies: contact challenges and electrical characterization.
    Erts D; Polyakov B; Daly B; Morris MA; Ellingboe S; Boland J; Holmes JD
    J Phys Chem B; 2006 Jan; 110(2):820-6. PubMed ID: 16471609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the p-type character of Cd-and Zn-doped InAs nanowires.
    dos Santos CL; Schmidt TM; Piquini P
    Nanotechnology; 2011 Jul; 22(26):265203. PubMed ID: 21576774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of nanowire superlattice structures for nanoscale photonics and electronics.
    Gudiksen MS; Lauhon LJ; Wang J; Smith DC; Lieber CM
    Nature; 2002 Feb; 415(6872):617-20. PubMed ID: 11832939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance switching in a SiC nanowire/Au nanoparticle network.
    Mori Y; Kohno H
    Nanotechnology; 2009 Jul; 20(28):285705. PubMed ID: 19550009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures.
    Wu Y; Xiang J; Yang C; Lu W; Lieber CM
    Nature; 2004 Jul; 430(6995):61-5. PubMed ID: 15229596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and analysis of nanowires.
    Bell DC; Wu Y; Barrelet CJ; Gradecak S; Xiang J; Timko BP; Lieber CM
    Microsc Res Tech; 2004 Aug; 64(5-6):373-89. PubMed ID: 15549698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soluble InP and GaP nanowires: self-seeded, solution-liquid-solid synthesis and electrical properties.
    Liu Z; Sun K; Jian WB; Xu D; Lin YF; Fang J
    Chemistry; 2009; 15(18):4546-52. PubMed ID: 19343761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic field and partial Fermi level pinning at the pentacene-SiO(2) interface.
    Chen L; Ludeke R; Cui X; Schrott AG; Kagan CR; Brus LE
    J Phys Chem B; 2005 Feb; 109(5):1834-8. PubMed ID: 16851165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical trapping and integration of semiconductor nanowire assemblies in water.
    Pauzauskie PJ; Radenovic A; Trepagnier E; Shroff H; Yang P; Liphardt J
    Nat Mater; 2006 Feb; 5(2):97-101. PubMed ID: 16429143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical simulation of Kelvin probe force microscopy for Si surfaces by taking account of chemical forces.
    Tsukada M; Masago A; Shimizu M
    J Phys Condens Matter; 2012 Feb; 24(8):084002. PubMed ID: 22309993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of the lateral resolution in electrostatic force microscopy for dielectric samples.
    Riedel C; Alegría A; Schwartz GA; Colmenero J; Sáenz JJ
    Nanotechnology; 2011 Jul; 22(28):285705. PubMed ID: 21646694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of charge separation and interface formation in a single nanorod CdS-Cu(x)S heterojunction solar cell using Kelvin probe force microscopy.
    Gupta S; Batra Y; Mehta BR; Satsangi VR
    Nanotechnology; 2013 Jun; 24(25):255703. PubMed ID: 23708491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room temperature observation of quantum confinement in single InAs nanowires.
    Halpern E; Henning A; Shtrikman H; Rurali R; Cartoixà X; Rosenwaks Y
    Nano Lett; 2015 Jan; 15(1):481-5. PubMed ID: 25494683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.