These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19843991)

  • 21. Josephson junctions with tunable weak links.
    Schön JH; Kloc C; Hwang HY; Batlogg B
    Science; 2001 Apr; 292(5515):252-4. PubMed ID: 11303093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An angled nano-tunnel fabricated on poly(methyl methacrylate) by a focused ion beam.
    Her EK; Chung HS; Moon MW; Oh KH
    Nanotechnology; 2009 Jul; 20(28):285301. PubMed ID: 19546496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures.
    Long R; Chen J; Lim JH; Wiley JB; Zhou W
    Nanotechnology; 2009 Jul; 20(28):285306. PubMed ID: 19546502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled fabrication and electrical properties of long quasi-one-dimensional superconducting nanowire arrays.
    Xu K; Heath JR
    Nano Lett; 2008 Jan; 8(1):136-41. PubMed ID: 18052403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High density germanium nanowire assemblies: contact challenges and electrical characterization.
    Erts D; Polyakov B; Daly B; Morris MA; Ellingboe S; Boland J; Holmes JD
    J Phys Chem B; 2006 Jan; 110(2):820-6. PubMed ID: 16471609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and characterization of high-T(c) YBa(2)Cu(3)O(7-x) nanoSQUIDs made by focused ion beam milling.
    Wu CH; Chou YT; Kuo WC; Chen JH; Wang LM; Chen JC; Chen KL; Sou UC; Yang HC; Jeng JT
    Nanotechnology; 2008 Aug; 19(31):315304. PubMed ID: 21828785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The nanofabrication of polydimethylsiloxane using a focused ion beam.
    Guan L; Peng K; Yang Y; Qiu X; Wang C
    Nanotechnology; 2009 Apr; 20(14):145301. PubMed ID: 19420520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ epitaxial MgB2 thin films for superconducting electronics.
    Zeng X; Pogrebnyakov AV; Kotcharov A; Jones JE; Xi XX; Lysczek EM; Redwing JM; Xu S; Li Q; Lettieri J; Schlom DG; Tian W; Pan X; Liu ZK
    Nat Mater; 2002 Sep; 1(1):35-8. PubMed ID: 12618845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single nanoporous gold nanowire sensors.
    Liu Z; Searson PC
    J Phys Chem B; 2006 Mar; 110(9):4318-22. PubMed ID: 16509729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication.
    Chen S; Bomer JG; van der Wiel WG; Carlen ET; van den Berg A
    ACS Nano; 2009 Nov; 3(11):3485-92. PubMed ID: 19856905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope.
    Spoddig D; Schindler K; Rödiger P; Barzola-Quiquia J; Fritsch K; Mulders H; Esquinazi P
    Nanotechnology; 2007 Dec; 18(49):495202. PubMed ID: 20442468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards the silicon nanowire-based sensor for intracellular biochemical detection.
    Park I; Li Z; Li X; Pisano AP; Williams RS
    Biosens Bioelectron; 2007 Apr; 22(9-10):2065-70. PubMed ID: 17056246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of nanowire channels with unidirectional alignment and controlled length by a simple, gas-blowing-assisted, selective-transfer-printing technique.
    Kim YK; Kang PS; Kim DI; Shin G; Kim GT; Ha JS
    Small; 2009 Mar; 5(6):727-34. PubMed ID: 19197970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nb/InAs nanowire proximity junctions from Josephson to quantum dot regimes.
    Gharavi K; Holloway GW; LaPierre RR; Baugh J
    Nanotechnology; 2017 Feb; 28(8):085202. PubMed ID: 28106009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. "Giant" enhancement of the upper critical field and fluctuations above the bulk Tc in superconducting ultrathin lead nanowire arrays.
    He M; Wong CH; Tse PL; Zheng Y; Zhang H; Lam FL; Sheng P; Hu X; Lortz R
    ACS Nano; 2013 May; 7(5):4187-93. PubMed ID: 23565799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coulomb blockade and BLOCH oscillations in superconducting Ti nanowires.
    Lehtinen JS; Zakharov K; Arutyunov KY
    Phys Rev Lett; 2012 Nov; 109(18):187001. PubMed ID: 23215316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum Phase Slips in 6 mm Long Niobium Nanowire.
    Zhao W; Liu X; Chan MH
    Nano Lett; 2016 Feb; 16(2):1173-8. PubMed ID: 26788964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of superconducting niobium nitride nanowire with high aspect ratio for X-ray photon detection.
    Guo S; Chen Q; Pan D; Wu Y; Tu X; He G; Han H; Li F; Jia X; Zhao Q; Zhang H; Bei X; Xie J; Zhang L; Chen J; Kang L; Wu P
    Sci Rep; 2020 Jun; 10(1):9057. PubMed ID: 32494024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Precise slit-width control of niobium apertures for superconducting LEDs.
    Huh JH; Hermannstädter C; Sato H; Ito S; Idutsu Y; Sasakura H; Tanaka K; Akazaki T; Suemune I
    Nanotechnology; 2011 Jan; 22(4):045302. PubMed ID: 21169663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of Ga(+) irradiation on the transport properties of mesoscopic conducting thin films.
    Barzola-Quiquia J; Dusari S; Bridoux G; Bern F; Molle A; Esquinazi P
    Nanotechnology; 2010 Apr; 21(14):145306. PubMed ID: 20220225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.