BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 19844226)

  • 1. Computational methods for discovering structural variation with next-generation sequencing.
    Medvedev P; Stanciu M; Brudno M
    Nat Methods; 2009 Nov; 6(11 Suppl):S13-20. PubMed ID: 19844226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CNV-seq, a new method to detect copy number variation using high-throughput sequencing.
    Xie C; Tammi MT
    BMC Bioinformatics; 2009 Mar; 10():80. PubMed ID: 19267900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing.
    Horner DS; Pavesi G; Castrignanò T; De Meo PD; Liuni S; Sammeth M; Picardi E; Pesole G
    Brief Bioinform; 2010 Mar; 11(2):181-97. PubMed ID: 19864250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive and accurate detection of copy number variants using read depth of coverage.
    Yoon S; Xuan Z; Makarov V; Ye K; Sebat J
    Genome Res; 2009 Sep; 19(9):1586-92. PubMed ID: 19657104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing and interpreting genetic variation from personal genome sequencing.
    Johansson AC; Feuk L
    Methods Mol Biol; 2012; 838():343-67. PubMed ID: 22228021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives.
    Zhao M; Wang Q; Wang Q; Jia P; Zhao Z
    BMC Bioinformatics; 2013; 14 Suppl 11(Suppl 11):S1. PubMed ID: 24564169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complete genome of an individual by massively parallel DNA sequencing.
    Wheeler DA; Srinivasan M; Egholm M; Shen Y; Chen L; McGuire A; He W; Chen YJ; Makhijani V; Roth GT; Gomes X; Tartaro K; Niazi F; Turcotte CL; Irzyk GP; Lupski JR; Chinault C; Song XZ; Liu Y; Yuan Y; Nazareth L; Qin X; Muzny DM; Margulies M; Weinstock GM; Gibbs RA; Rothberg JM
    Nature; 2008 Apr; 452(7189):872-6. PubMed ID: 18421352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding.
    McKernan KJ; Peckham HE; Costa GL; McLaughlin SF; Fu Y; Tsung EF; Clouser CR; Duncan C; Ichikawa JK; Lee CC; Zhang Z; Ranade SS; Dimalanta ET; Hyland FC; Sokolsky TD; Zhang L; Sheridan A; Fu H; Hendrickson CL; Li B; Kotler L; Stuart JR; Malek JA; Manning JM; Antipova AA; Perez DS; Moore MP; Hayashibara KC; Lyons MR; Beaudoin RE; Coleman BE; Laptewicz MW; Sannicandro AE; Rhodes MD; Gottimukkala RK; Yang S; Bafna V; Bashir A; MacBride A; Alkan C; Kidd JM; Eichler EE; Reese MG; De La Vega FM; Blanchard AP
    Genome Res; 2009 Sep; 19(9):1527-41. PubMed ID: 19546169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome assembly reborn: recent computational challenges.
    Pop M
    Brief Bioinform; 2009 Jul; 10(4):354-66. PubMed ID: 19482960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved variant discovery through local re-alignment of short-read next-generation sequencing data using SRMA.
    Homer N; Nelson SF
    Genome Biol; 2010; 11(10):R99. PubMed ID: 20932289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation.
    Chen K; Wallis JW; McLellan MD; Larson DE; Kalicki JM; Pohl CS; McGrath SD; Wendl MC; Zhang Q; Locke DP; Shi X; Fulton RS; Ley TJ; Wilson RK; Ding L; Mardis ER
    Nat Methods; 2009 Sep; 6(9):677-81. PubMed ID: 19668202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hidden Markov Models in Bioinformatics: SNV Inference from Next Generation Sequence.
    Bian J; Zhou X
    Methods Mol Biol; 2017; 1552():123-133. PubMed ID: 28224495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short Read Alignment Using SOAP2.
    Hurgobin B
    Methods Mol Biol; 2016; 1374():241-52. PubMed ID: 26519410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of second generation sequencing technologies in complex disorders.
    Bayés M; Heath S; Gut IG
    Curr Top Behav Neurosci; 2012; 12():321-43. PubMed ID: 22331695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatics Data Analysis of Next-Generation Sequencing Data from Heterogeneous Tumor Samples.
    Landman SR; Hwang TH
    Methods Mol Biol; 2017; 1633():185-192. PubMed ID: 28735488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of ring chromosome 18 by low-coverage next generation sequencing.
    Ji X; Liang D; Sun R; Liu C; Ma D; Wang Y; Hu P; Xu Z
    BMC Med Genet; 2015 Jul; 16():57. PubMed ID: 26224010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in understanding cancer genomes through second-generation sequencing.
    Meyerson M; Gabriel S; Getz G
    Nat Rev Genet; 2010 Oct; 11(10):685-96. PubMed ID: 20847746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do it yourself guide to genome assembly.
    Wajid B; Serpedin E
    Brief Funct Genomics; 2016 Jan; 15(1):1-9. PubMed ID: 25392234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GMAP and GSNAP for Genomic Sequence Alignment: Enhancements to Speed, Accuracy, and Functionality.
    Wu TD; Reeder J; Lawrence M; Becker G; Brauer MJ
    Methods Mol Biol; 2016; 1418():283-334. PubMed ID: 27008021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule DNA sequencing technologies for future genomics research.
    Gupta PK
    Trends Biotechnol; 2008 Nov; 26(11):602-11. PubMed ID: 18722683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.