These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 19844299)

  • 1. Insect monitoring with fluorescence lidar techniques: feasibility study.
    Brydegaard M; Guan Z; Wellenreuther M; Svanberg S
    Appl Opt; 2009 Oct; 48(30):5668-77. PubMed ID: 19844299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect monitoring with fluorescence lidar techniques: field experiments.
    Guan Z; Brydegaard M; Lundin P; Wellenreuther M; Runemark A; Svensson EI; Svanberg S
    Appl Opt; 2010 Sep; 49(27):5133-42. PubMed ID: 20856288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sympatric shift in a male sexual ornament in the damselfly Calopteryx splendens.
    Honkavaara J; Dunn DW; Ilvonen S; Suhonen J
    J Evol Biol; 2011 Jan; 24(1):139-45. PubMed ID: 21044198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lidar equation for ocean surface and subsurface.
    Josset D; Zhai PW; Hu Y; Pelon J; Lucker PL
    Opt Express; 2010 Sep; 18(20):20862-75. PubMed ID: 20940981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cuticle structure and crystalline wax coverage on the coloration in young and old males of Calopteryx splendens and Calopteryx virgo.
    Kuitunen K; Gorb SN
    Zoology (Jena); 2011 Jun; 114(3):129-39. PubMed ID: 21683565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating range expansion: male species recognition and loss of premating isolation in damselflies.
    Wellenreuther M; Tynkkynen K; Svensson EI
    Evolution; 2010 Jan; 64(1):242-52. PubMed ID: 19674095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observations of movement dynamics of flying insects using high resolution lidar.
    Kirkeby C; Wellenreuther M; Brydegaard M
    Sci Rep; 2016 Jul; 6():29083. PubMed ID: 27375089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective predation on wing morphology in sympatric damselflies.
    Svensson EI; Friberg M
    Am Nat; 2007 Jul; 170(1):101-12. PubMed ID: 17853995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility study: fluorescence lidar for remote bird classification.
    Brydegaard M; Lundin P; Guan Z; Runemark A; Akesson S; Svanberg S
    Appl Opt; 2010 Aug; 49(24):4531-44. PubMed ID: 20733624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acidity effects on the fluorescence properties and adsorptive behavior of rhodamine 6G molecules at the air-water interface studied with confocal fluorescence microscopy.
    Zheng XY; Wachi M; Harata A; Hatano Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1085-90. PubMed ID: 15084327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interspecific aggression and character displacement in the damselfly Calopteryx splendens.
    Tynkkynen K; Rantala MJ; Suhonen J
    J Evol Biol; 2004 Jul; 17(4):759-67. PubMed ID: 15271075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interspecific interactions influence contrasting spatial genetic structures in two closely related damselfly species.
    Kahilainen A; Keränen I; Kuitunen K; Kotiaho JS; Knott KE
    Mol Ecol; 2014 Oct; 23(20):4976-88. PubMed ID: 25211376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D lidar imaging for detecting and understanding plant responses and canopy structure.
    Omasa K; Hosoi F; Konishi A
    J Exp Bot; 2007; 58(4):881-98. PubMed ID: 17030540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote nocturnal bird classification by spectroscopy in extended wavelength ranges.
    Lundin P; Samuelsson P; Svanberg S; Runemark A; Åkesson S; Brydegaard M
    Appl Opt; 2011 Jul; 50(20):3396-411. PubMed ID: 21743546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic integration and conserved covariance structure in calopterygid damselflies.
    Eroukhmanoff F; Svensson EI
    J Evol Biol; 2008 Mar; 21(2):514-26. PubMed ID: 18205782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light microscopy techniques for live cell imaging.
    Stephens DJ; Allan VJ
    Science; 2003 Apr; 300(5616):82-6. PubMed ID: 12677057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A functionalized gold nanoparticles and Rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury(II) in environmental water samples.
    Chen J; Zheng A; Chen A; Gao Y; He C; Kai X; Wu G; Chen Y
    Anal Chim Acta; 2007 Sep; 599(1):134-42. PubMed ID: 17765073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientational and dynamical heterogeneity of rhodamine 6G terminally attached to a DNA helix revealed by NMR and single-molecule fluorescence spectroscopy.
    Neubauer H; Gaiko N; Berger S; Schaffer J; Eggeling C; Tuma J; Verdier L; Seidel CA; Griesinger C; Volkmer A
    J Am Chem Soc; 2007 Oct; 129(42):12746-55. PubMed ID: 17900110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using LiDAR technology in forestry activities.
    Akay AE; Oğuz H; Karas IR; Aruga K
    Environ Monit Assess; 2009 Apr; 151(1-4):117-25. PubMed ID: 18365761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel fluorescent distinguished probe for Cr (VI) in aqueous solution.
    Zheng A; Chen J; Wu G; Wu G; Zhang YG; Wei H
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):265-70. PubMed ID: 19592297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.