These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 19844346)

  • 1. Photocurrents in photoconductive semiconductors generated by a moving space-charge field.
    Davidson FM; Wang CC; Field CT; Trivedi S
    Opt Lett; 1994 Apr; 19(7):478-80. PubMed ID: 19844346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical phase-lock loops with photoconductive semiconductor phase detectors.
    Davidson F; Wang CC; Trivedi S
    Opt Lett; 1994 Jun; 19(11):774-6. PubMed ID: 19844441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences.
    Wang CC; Davidson F; Trivedi S
    Appl Opt; 1995 Oct; 34(28):6496-9. PubMed ID: 21060500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient photocurrents in photoconductive semiconductors generated by step-phase modulations.
    Davidson F; Wang CC; Trivedi S
    Opt Lett; 1995 Jan; 20(2):175-7. PubMed ID: 19859125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoconductive terahertz generation in semi-insulating GaAs and InP under the extremes of bias field and pump fluence.
    Alfihed S; Jenne MF; Ciocoiu A; Foulds IG; Holzman JF
    Opt Lett; 2021 Feb; 46(3):572-575. PubMed ID: 33528411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr.
    Stepanov SI; Sokolov IA; Trofimov GS; Vlad VI; Popa D; Apostol I
    Opt Lett; 1990 Nov; 15(21):1239-41. PubMed ID: 19771053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversal of coherently controlled ultrafast photocurrents by band mixing in undoped GaAs quantum wells.
    Priyadarshi S; Racu AM; Pierz K; Siegner U; Bieler M; Duc HT; Förstner J; Meier T
    Phys Rev Lett; 2010 May; 104(21):217401. PubMed ID: 20867134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators.
    Zhou L; Zhu H; Zhang H; Chen J
    Opt Express; 2014 Jan; 22(2):2141-9. PubMed ID: 24515224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs.
    Tani M; Matsuura S; Sakai K; Nakashima S
    Appl Opt; 1997 Oct; 36(30):7853-9. PubMed ID: 18264312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moving grating and intrinsic electron-hole resonance in two-wave mixing in photorefractive InP:Fe.
    Mainguet B; Guiner FL; Picoli G
    Opt Lett; 1990 Sep; 15(17):938-40. PubMed ID: 19770958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chopped moving photocarrier grating technique.
    Kopprio L; Ventosinos F; Schmidt J
    Rev Sci Instrum; 2019 Dec; 90(12):123902. PubMed ID: 31893801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas.
    Liu TA; Tani M; Nakajima M; Hangyo M; Sakai K; Nakashima S; Pan CL
    Opt Express; 2004 Jun; 12(13):2954-9. PubMed ID: 19483812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Space-charge limited photocurrent.
    Mihailetchi VD; Wildeman J; Blom PW
    Phys Rev Lett; 2005 Apr; 94(12):126602. PubMed ID: 15903944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model for resonant intensity dependence of photorefractive two-wave mixing in InP:Fe.
    Picoli G; Gravey P; Ozkul C
    Opt Lett; 1989 Dec; 14(24):1362-4. PubMed ID: 19759683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoconductive terahertz generation from textured semiconductor materials.
    Collier CM; Stirling TJ; Hristovski IR; Krupa JD; Holzman JF
    Sci Rep; 2016 Mar; 6():23185. PubMed ID: 26979292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-space terahertz radiation from a LT-GaAs-on-quartz large-area photoconductive emitter.
    Bacon DR; Burnett AD; Swithenbank M; Russell C; Li L; Wood CD; Cunningham J; Linfield EH; Davies AG; Dean P; Freeman JR
    Opt Express; 2016 Nov; 24(23):26986-26997. PubMed ID: 27857425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe.
    Chauvet M; Hawkins SA; Salamo GJ; Segev M; Bliss DF; Bryant G
    Opt Lett; 1996 Sep; 21(17):1333-5. PubMed ID: 19876343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency acoustic charge transport in GaAs nanowires.
    Büyükköse S; Hernández-Mínguez A; Vratzov B; Somaschini C; Geelhaar L; Riechert H; van der Wiel WG; Santos PV
    Nanotechnology; 2014 Apr; 25(13):135204. PubMed ID: 24595075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal arrhenius temperature activated charge transport in diodes from disordered organic semiconductors.
    Craciun NI; Wildeman J; Blom PW
    Phys Rev Lett; 2008 Feb; 100(5):056601. PubMed ID: 18352403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant photodiffractive four-wave mixing in semi-insulating GaAs/AlGaAs quantum wells.
    Glass AM; Nolte DD; Olson DH; Doran GE; Chemla DS; Knox WH
    Opt Lett; 1990 Mar; 15(5):264-6. PubMed ID: 19759777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.