These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 19844470)

  • 1. Transient degenerate four-wave mixing in a saturable Nd:YAG amplifier: the effect of pump-beam propagation.
    Brignon A; Raffy J; Huignard JP
    Opt Lett; 1994 Jun; 19(12):865-7. PubMed ID: 19844470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of multipass geometries for efficient degenerate four-wave mixing in Nd:YAG.
    Crofts GJ; Green RP; Damzen MJ
    Opt Lett; 1992 Jul; 17(13):920-2. PubMed ID: 19794673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-phase-conjugate reflectivity (<800%) obtained by degenerate four-wave mixing in a continuous-wave diode-side-pumped Nd:YVO(4) amplifier.
    Mailis S; Hendricks J; Shepherd DP; Tropper AC; Moore N; Eason RW; Crofts GJ; Trew M; Damzen MJ
    Opt Lett; 1999 Jul; 24(14):972-4. PubMed ID: 18073913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient self-diffraction in Nd:YAG saturable amplifiers.
    Brignon A; Huignard JP
    Opt Lett; 1994 Apr; 19(7):451-3. PubMed ID: 19844337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase conjugation in Cr(4+):YAG at 1.06 microm.
    Brignon A; Huignard JP
    Opt Lett; 1996 Aug; 21(15):1126-8. PubMed ID: 19876274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient degenerate four-wave mixing in a diode-pumped microchip Nd:YVO(4) amplifier.
    Brignon A; Feugnet G; Huignard JP; Pocholle JP
    Opt Lett; 1995 Mar; 20(6):548-50. PubMed ID: 19859251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous-wave operation of saturable-gain degenerate four-wave mixing in a Nd:YVO(4) amplifier.
    Brignon A; Huignard JP
    Opt Lett; 1995 Oct; 20(20):2096-8. PubMed ID: 19862262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient degenerate four-wave mixing with multipass geometries in a polymer laser dye saturable amplifier.
    Watanabe H; Omatsu T; Hirose T; Hasegawa A; Tateda M
    Opt Lett; 1999 Nov; 24(22):1620-2. PubMed ID: 18079883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nondegenerate four-wave-mixing measurements of a resonantly induced refractive-index grating in a Nd:YAG amplifier.
    Antipov OL; Kuzhelev AS; Chausov DV
    Opt Lett; 1998 Mar; 23(6):448-50. PubMed ID: 18084540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probe-beam intensity-dependent reflectivity in degenerate four-wave mixing in a saturable absorber.
    Kwon JH; Lee SS
    Opt Lett; 1983 Aug; 8(8):428-30. PubMed ID: 19718137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conjugate generation and beam steering by nearly degenerate four-wave mixing in waveguide arrays.
    Simpson TB; Liu JM
    Opt Lett; 1989 Dec; 14(24):1383-5. PubMed ID: 19759690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guiding of laser modes based on self-pumped four-wave mixing in a semiconductor amplifier.
    Petersen P; Samsøe E; Jensen S; Andersen P
    Opt Express; 2005 May; 13(9):3340-7. PubMed ID: 19495236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional modeling of transient gain gratings in saturable gain media.
    Elsner R; Ullmann R; Heuer A; Menzel R; Ostermeyer M
    Opt Express; 2012 Mar; 20(7):6887-96. PubMed ID: 22453366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency degenerate four-wave mixing of 1.06-microm radiation in silicon.
    Jain RK; Klein MB; Lind RC
    Opt Lett; 1979 Oct; 4(10):328-30. PubMed ID: 19687893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-resonant phase-conjugate reflection and amplification at 10.6 microm in inverted CO(2).
    Fisher RA; Feldman BJ
    Opt Lett; 1979 May; 4(5):140-2. PubMed ID: 19687827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization-resolved coherent transient beam combination in optical Kerr media.
    Rogovin D; Shen TP; Scholl J; Dutton T; Rentzepis P
    Opt Lett; 1990 Oct; 15(20):1132-4. PubMed ID: 19771019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of vector phase conjugation in Nd(3+):YAG.
    Green RP; Camacho-Lopez S; Damzen MJ
    Opt Lett; 1996 Aug; 21(16):1214-6. PubMed ID: 19876303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 8.2  kW high beam quality quasi-continuous-wave face-pumped Nd:YAG slab amplifier.
    Chen ZZ; Xu YT; Guo YD; Wang BS; Xu J; Xu JL; Gao HW; Yuan L; Yuan HT; Lin YY; Xiao YS; Bo Y; Peng QJ; Lei WQ; Cui DF; Xu ZY
    Appl Opt; 2015 Jun; 54(16):5011-5. PubMed ID: 26192659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of nonlinear effects at the degenerate band edge of two-dimensional photonic crystals.
    Astic M; Delaye P; Frey R; Roosen G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056608. PubMed ID: 19518583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-energy Nd:YAG laser system with arbitrary sub-nanosecond pulse shaping capability.
    Meijer RA; Stodolna AS; Eikema KSE; Witte S
    Opt Lett; 2017 Jul; 42(14):2758-2761. PubMed ID: 28708162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.