These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. 40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier. Meuer C; Schmidt-Langhorst C; Schmeckebier H; Fiol G; Arsenijević D; Schubert C; Bimberg D Opt Express; 2011 Feb; 19(4):3788-98. PubMed ID: 21369203 [TBL] [Abstract][Full Text] [Related]
4. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers. Diez S; Mecozzi A; Mørk J Opt Lett; 1999 Dec; 24(23):1675-7. PubMed ID: 18079899 [TBL] [Abstract][Full Text] [Related]
5. Two-wave mixing in a broad-area semiconductor amplifier. Chi M; Jensen SB; Huignard JP; Petersen PM Opt Express; 2006 Dec; 14(25):12373-9. PubMed ID: 19529668 [TBL] [Abstract][Full Text] [Related]
6. Nonlinear gain amplification due to two-wave mixing in a broad-area semiconductor amplifier with moving gratings. Chi M; Huignard JP; Petersen PM Opt Express; 2008 Apr; 16(8):5565-71. PubMed ID: 18542659 [TBL] [Abstract][Full Text] [Related]
7. Guiding of laser modes based on self-pumped four-wave mixing in a semiconductor amplifier. Petersen P; Samsøe E; Jensen S; Andersen P Opt Express; 2005 May; 13(9):3340-7. PubMed ID: 19495236 [TBL] [Abstract][Full Text] [Related]
8. 320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers. Matsuura M; Raz O; Gomez-Agis F; Calabretta N; Dorren HJ Opt Lett; 2011 Aug; 36(15):2910-2. PubMed ID: 21808355 [TBL] [Abstract][Full Text] [Related]
9. Analytical description of spectral hole-burning effects in active semiconductors. Balle S Opt Lett; 2002 Nov; 27(21):1923-5. PubMed ID: 18033403 [TBL] [Abstract][Full Text] [Related]
10. Cavity standing-wave and gain compression coefficient in semiconductor lasers. Mecozzi A Opt Lett; 1994 May; 19(9):640-2. PubMed ID: 19844398 [TBL] [Abstract][Full Text] [Related]
12. Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers. Su H; Kondratko P; Chuang SL Opt Express; 2006 May; 14(11):4800-7. PubMed ID: 19516637 [TBL] [Abstract][Full Text] [Related]
13. 27 dB gain III-V-on-silicon semiconductor optical amplifier with > 17 dBm output power. Van Gasse K; Wang R; Roelkens G Opt Express; 2019 Jan; 27(1):293-302. PubMed ID: 30645375 [TBL] [Abstract][Full Text] [Related]
14. Practical scheme for polarization-insensitive and frequency-conversion interval independent four-wave mixing in semiconductor optical amplifiers. Tang JM; Spencer PS; Shore KA Opt Lett; 1999 Nov; 24(22):1605-7. PubMed ID: 18079878 [TBL] [Abstract][Full Text] [Related]
15. Ultrahigh-speed all-optical half adder based on four-wave mixing in semiconductor optical amplifier. Li PL; Huang DX; Zhang XL; Zhu GX Opt Express; 2006 Nov; 14(24):11839-47. PubMed ID: 19529607 [TBL] [Abstract][Full Text] [Related]
16. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers. Xue W; Chen Y; Ohman F; Mørk J Opt Express; 2009 Feb; 17(3):1404-13. PubMed ID: 19188968 [TBL] [Abstract][Full Text] [Related]
17. An all-optical frequency up-converter utilizing four-wave mixing in a semiconductor optical amplifier for sub-carrier multiplexed radio-over-fiber applications. Kim HJ; Song JI; Song HJ Opt Express; 2007 Mar; 15(6):3384-9. PubMed ID: 19532579 [TBL] [Abstract][Full Text] [Related]
18. Four-wave mixing and phase conjugation in semiconductor laser media. Agrawal GP Opt Lett; 1987 Apr; 12(4):260-2. PubMed ID: 19738858 [TBL] [Abstract][Full Text] [Related]