These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19844479)

  • 21. Gain cross saturation and spectral hole burning in wideband erbium-doped fiber amplifiers.
    Tachibana M; Laming RI; Morkel PR; Payne DN
    Opt Lett; 1991 Oct; 16(19):1499-501. PubMed ID: 19777013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing light slow-down in semiconductor optical amplifiers by optical filtering.
    Xue W; Chen Y; Ohman F; Sales S; Mørk J
    Opt Lett; 2008 May; 33(10):1084-6. PubMed ID: 18483520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved optical single-sideband generation using the self-modulation birefringence difference in semiconductor optical amplifiers.
    Jiang H; Wen H; Zheng X; Liu Z; Wang K; Zhang H; Guo Y
    Opt Lett; 2007 Sep; 32(17):2580-2. PubMed ID: 17767311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amplification and compression of weak picosecond optical pulses by using semiconductor-laser amplifiers.
    Agrawal GP; Olsson NA
    Opt Lett; 1989 May; 14(10):500-2. PubMed ID: 19749965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous-wave two-photon absorption in a Watt-class semiconductor optical amplifier.
    Juodawlkis PW; Plant JJ; Donnelly JP; Motamedi A; Ippen EP
    Opt Express; 2008 Aug; 16(16):12387-96. PubMed ID: 18679515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Broad-area vertical cavity semiconductor optical amplifiers].
    Sun CL; Liang XM; Qin L; Jia LH; Ning YQ; Wang LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 May; 30(5):1413-6. PubMed ID: 20672645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tapered semiconductor amplifiers for optical frequency combs in the near infrared.
    Cruz FC; Stowe MC; Ye J
    Opt Lett; 2006 May; 31(9):1337-9. PubMed ID: 16642104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance comparisons between semiconductor and fiber amplifier gain assistance in a recirculating frequency shifter.
    Wang X; Mookherjea S
    Opt Lett; 2018 Mar; 43(5):1011-1014. PubMed ID: 29489766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gain-flattened fiber Raman amplifiers with nonlinearity-broadened pumps.
    Chestnut DA; Taylor JR
    Opt Lett; 2003 Dec; 28(23):2294-6. PubMed ID: 14680160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser.
    Xu Y; Fang Q; Qin Y; Meng X; Shi W
    Appl Opt; 2015 Nov; 54(32):9419-21. PubMed ID: 26560767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-domain model of quantum-dot semiconductor optical amplifiers for wideband optical signals.
    Puris D; Schmidt-Langhorst C; Lüdge K; Majer N; Schöll E; Petermann K
    Opt Express; 2012 Nov; 20(24):27265-82. PubMed ID: 23187582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hamiltonian approach for optimization of phase-sensitive double-pumped parametric amplifiers.
    Medvedev S; Bednyakova A
    Opt Express; 2018 Jun; 26(12):15503-15518. PubMed ID: 30114810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy limits imposed by two-photon absorption for pulse amplification in high-power semiconductor optical amplifiers.
    Ahmad FR; Tseng YW; Kats MA; Rana F
    Opt Lett; 2008 May; 33(10):1041-3. PubMed ID: 18483505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Demonstration of an erbium-doped fiber with annular doping for low gain compression in cladding-pumped amplifiers.
    Matte-Breton C; Chen H; Fontaine NK; Ryf R; Essiambre RJ; Kelly C; Jin C; Messaddeq Y; LaRochelle S
    Opt Express; 2018 Oct; 26(20):26633-26645. PubMed ID: 30469746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppression of WDM four-wave mixing crosstalk in fibre optic parametric amplifier using Raman-assisted pumping.
    Redyuk A; Stephens MF; Doran NJ
    Opt Express; 2015 Oct; 23(21):27240-9. PubMed ID: 26480384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrically tunable slow and fast lights in a quantum-dot semiconductor optical amplifier near 1.55 microm.
    Matsudaira A; Lee D; Kondratko P; Nielsen D; Chuang SL; Kim NJ; Oh JM; Pyun SH; Jeong WG; Jang JW
    Opt Lett; 2007 Oct; 32(19):2894-6. PubMed ID: 17909609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Difference-frequency mixing in AgGaS(2) by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm.
    Simon U; Tittel FK; Goldberg L
    Opt Lett; 1993 Nov; 18(22):1931-3. PubMed ID: 19829451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 10 Gbps WDM transmission performance limits using in-line SOAs and an optical phase conjugator based on four-wave mixing in SOAs as a mid-span spectral inversion technique.
    Hur S; Kim Y; Jang H; Jeong J
    Opt Express; 2006 May; 14(11):4589-600. PubMed ID: 19516612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimized design of six-wave fiber optical parametric amplifiers by using a genetic algorithm.
    Li P; Zhu H; Taccheo S; Gao X; Wang Z
    Appl Opt; 2017 May; 56(15):4406-4411. PubMed ID: 29047870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.
    Contestabile G; Yoshida Y; Maruta A; Kitayama K
    Opt Express; 2012 Dec; 20(25):27902-7. PubMed ID: 23262735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.