These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 19844602)
1. ADE-FDTD Scattered-Field Formulation for Dispersive Materials. Kong SC; Simpson JJ; Backman V IEEE Microw Wirel Compon Lett; 2008 Jan; 18(1):4-6. PubMed ID: 19844602 [TBL] [Abstract][Full Text] [Related]
2. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media. Zhao S Opt Lett; 2011 Aug; 36(16):3245-7. PubMed ID: 21847222 [TBL] [Abstract][Full Text] [Related]
3. The HIE-FDTD Method for Simulating Dispersion Media Represented by Drude, Debye, and Lorentz Models. Chen J; Mou C Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049274 [TBL] [Abstract][Full Text] [Related]
4. Numerical Stability of Modified Lorentz FDTD Unified From Various Dispersion Models. Park J; Jung KY Opt Express; 2021 Jul; 29(14):21639-21654. PubMed ID: 34265947 [TBL] [Abstract][Full Text] [Related]
5. Auxiliary differential equation (ADE) method based complying-divergence implicit FDTD method for simulating the general dispersive anisotropic material. Xie G; Hou G; Feng N; Song K; Fang M; Li Y; Wu X; Huang Z Opt Express; 2023 May; 31(11):18468-18486. PubMed ID: 37381557 [TBL] [Abstract][Full Text] [Related]
6. FDTD scattered field formulation for scatterers in stratified dispersive media. Olkkonen J Opt Express; 2010 Mar; 18(5):4380-9. PubMed ID: 20389450 [TBL] [Abstract][Full Text] [Related]
7. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media. Wang XH; Yin WY; Chen ZZ Opt Express; 2013 Sep; 21(18):20565-76. PubMed ID: 24103929 [TBL] [Abstract][Full Text] [Related]
8. Radiation pressure of active dispersive chiral slabs. Wang M; Li H; Gao D; Gao L; Xu J; Qiu CW Opt Express; 2015 Jun; 23(13):16546-53. PubMed ID: 26191666 [TBL] [Abstract][Full Text] [Related]
9. Effective optical response of silicon to sunlight in the finite-difference time-domain method. Deinega A; John S Opt Lett; 2012 Jan; 37(1):112-4. PubMed ID: 22212808 [TBL] [Abstract][Full Text] [Related]
10. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition. Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394 [TBL] [Abstract][Full Text] [Related]
11. Unconditionally stable FDTD algorithm for 3-D electromagnetic simulation of nonlinear media. Moradi M; Pourangha SM; Nayyeri V; Soleimani M; Ramahi OM Opt Express; 2019 May; 27(10):15018-15031. PubMed ID: 31163941 [TBL] [Abstract][Full Text] [Related]
12. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials. Udagedara I; Premaratne M; Rukhlenko ID; Hattori HT; Agrawal GP Opt Express; 2009 Nov; 17(23):21179-90. PubMed ID: 19997357 [TBL] [Abstract][Full Text] [Related]
13. Generation of Bessel beam sources in FDTD. Wu Z; Han Y; Wang J; Cui Z Opt Express; 2018 Oct; 26(22):28727-28737. PubMed ID: 30470045 [TBL] [Abstract][Full Text] [Related]
14. Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method. Yamaguchi T; Hinata T Opt Express; 2007 Sep; 15(18):11481-91. PubMed ID: 19547505 [TBL] [Abstract][Full Text] [Related]
15. Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials. Challener W; Sendur I; Peng C Opt Express; 2003 Nov; 11(23):3160-70. PubMed ID: 19471441 [TBL] [Abstract][Full Text] [Related]
16. Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence. Belkhir A; Arar O; Benabbes SS; Lamrous O; Baida FI Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046705. PubMed ID: 20481858 [TBL] [Abstract][Full Text] [Related]
17. Auxiliary differential equation: efficient implementation in the finite-difference time-domain method. Körner TO; Fichtner W Opt Lett; 1997 Nov; 22(21):1586-8. PubMed ID: 18188304 [TBL] [Abstract][Full Text] [Related]
18. Electromagnetic simulation of quantum well structures. Shi S; Jin G; Prather DW Opt Express; 2006 Mar; 14(6):2459-72. PubMed ID: 19503585 [TBL] [Abstract][Full Text] [Related]
19. General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics. Greene JH; Taflove A Opt Express; 2006 Sep; 14(18):8305-10. PubMed ID: 19529206 [TBL] [Abstract][Full Text] [Related]
20. Body-of-revolution finite-difference time-domain modeling of hybrid-plasmonic ring resonators. Mirzaei-Ghormish S; Shahabadi M; Smalley DE Opt Express; 2022 Sep; 30(20):36332-36342. PubMed ID: 36258563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]