These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 19844747)

  • 21. Renal tubulointerstitial injury from ureteral obstruction in the neonatal rat is attenuated by IGF-1.
    Chevalier RL; Goyal S; Kim A; Chang AY; Landau D; LeRoith D
    Kidney Int; 2000 Mar; 57(3):882-90. PubMed ID: 10720941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathophysiology of obstructive nephropathy in the newborn.
    Chevalier RL
    Semin Nephrol; 1998 Nov; 18(6):585-93. PubMed ID: 9819149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unilateral ureteral obstruction in neonatal rats leads to renal insufficiency in adulthood.
    Chevalier RL; Thornhill BA; Chang AY
    Kidney Int; 2000 Nov; 58(5):1987-95. PubMed ID: 11044219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomarkers of congenital obstructive nephropathy: past, present and future.
    Chevalier RL
    J Urol; 2004 Sep; 172(3):852-7. PubMed ID: 15310982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RAGE-mediated interstitial fibrosis in neonatal obstructive nephropathy is independent of NF-κB activation.
    Gasparitsch M; Arndt AK; Pawlitschek F; Oberle S; Keller U; Kasper M; Bierhaus A; Schaefer F; Weber LT; Lange-Sperandio B
    Kidney Int; 2013 Nov; 84(5):911-9. PubMed ID: 23677242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of Toll-like receptor 2 in inflammation and fibrosis during progressive renal injury.
    Leemans JC; Butter LM; Pulskens WP; Teske GJ; Claessen N; van der Poll T; Florquin S
    PLoS One; 2009 May; 4(5):e5704. PubMed ID: 19479087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perinatal obstructive nephropathy.
    Chevalier RL
    Semin Perinatol; 2004 Apr; 28(2):124-31. PubMed ID: 15200251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proximal tubular injury and rapid formation of atubular glomeruli in mice with unilateral ureteral obstruction: a new look at an old model.
    Forbes MS; Thornhill BA; Chevalier RL
    Am J Physiol Renal Physiol; 2011 Jul; 301(1):F110-7. PubMed ID: 21429968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Renal parenchymal fibrosis and atrophy are not correlated with upper tract dilatation: long-term study of partial unilateral ureteral obstruction in neonatal mice.
    Botto N; Azoulay R; Peuchmaur M; El Ghoneimi A
    J Pediatr Urol; 2011 Jun; 7(3):310-6. PubMed ID: 21527217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Obstructive nephropathy in the neonatal rat is attenuated by epidermal growth factor.
    Chevalier RL; Goyal S; Wolstenholme JT; Thornhill BA
    Kidney Int; 1998 Jul; 54(1):38-47. PubMed ID: 9648061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting renal macrophage accumulation via c-fms kinase reduces tubular apoptosis but fails to modify progressive fibrosis in the obstructed rat kidney.
    Ma FY; Liu J; Kitching AR; Manthey CL; Nikolic-Paterson DJ
    Am J Physiol Renal Physiol; 2009 Jan; 296(1):F177-85. PubMed ID: 18987110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth factors and apoptosis in neonatal ureteral obstruction.
    Chevalier RL
    J Am Soc Nephrol; 1996 Aug; 7(8):1098-105. PubMed ID: 8866400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation and evolution of atubular glomeruli in the progression of renal disorders.
    Chevalier RL; Forbes MS
    J Am Soc Nephrol; 2008 Feb; 19(2):197-206. PubMed ID: 18199796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Urinary biomarkers in hydronephrosis.
    Madsen MG
    Dan Med J; 2013 Feb; 60(2):B4582. PubMed ID: 23461995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein kinase C inhibitor prevents renal apoptotic and fibrotic changes in response to partial ureteric obstruction.
    Juan YS; Chuang SM; Long CY; Lin RJ; Liu KM; Wu WJ; Huang CH
    BJU Int; 2012 Jul; 110(2):283-92. PubMed ID: 22145940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased transforming growth factor-beta1 and tubulointerstitial fibrosis in rats with congenital hydronephrosis.
    Zhou Y; Takahashi G; Shinagawa T; Okuhara T; Yonamine K; Aida Y; Tadokoro M
    Int J Urol; 2002 Sep; 9(9):491-500. PubMed ID: 12410929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of TNFR1 and TNFR2 receptors in tubulointerstitial fibrosis of obstructive nephropathy.
    Guo G; Morrissey J; McCracken R; Tolley T; Klahr S
    Am J Physiol; 1999 Nov; 277(5):F766-72. PubMed ID: 10564241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Congenital urinary tract obstruction: the long view.
    Chevalier RL
    Adv Chronic Kidney Dis; 2015 Jul; 22(4):312-9. PubMed ID: 26088076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Macrophages and progressive renal disease in experimental hydronephrosis.
    Diamond JR
    Am J Kidney Dis; 1995 Jul; 26(1):133-40. PubMed ID: 7611244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histologic and molecular evidence of obstructive uropathy in rats with hereditary congenital hydronephrosis.
    Seseke F; Thelen P; Hemmerlein B; Kliese D; Zöller G; Ringert RH
    Urol Res; 2000 Apr; 28(2):104-9. PubMed ID: 10850632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.