BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19844752)

  • 21. The use of date palm as a potential adsorbent for wastewater treatment: a review.
    Ahmad T; Danish M; Rafatullah M; Ghazali A; Sulaiman O; Hashim R; Ibrahim MN
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1464-84. PubMed ID: 22207239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A review of the application of sonophotocatalytic process based on advanced oxidation process for degrading organic dye.
    Zewde AA; Zhang L; Li Z; Odey EA
    Rev Environ Health; 2019 Dec; 34(4):365-375. PubMed ID: 31400750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system.
    Katsou E; Malamis S; Haralambous KJ
    Chemosphere; 2011 Jan; 82(4):557-64. PubMed ID: 21167554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of solid waste of ductile cast iron industry for treatment of wastewater contaminated by reactive blue dye via appropriate nano-porous magnesium oxide.
    Pourrahim S; Salem A; Salem S; Tavangar R
    Environ Pollut; 2020 Jan; 256():113454. PubMed ID: 31679878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Rapid Synthesis of Metal Organic Framework and Its Adsorption Properties on Anonic Dyes].
    Sun DS; Liu YL; Zhang XD; Qin TT
    Huan Jing Ke Xue; 2016 Mar; 37(3):1016-22. PubMed ID: 27337895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes.
    Sirianuntapiboon S; Sadahiro O; Salee P
    J Environ Manage; 2007 Oct; 85(1):162-70. PubMed ID: 17046148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong enhancement of methylene blue removal from binary wastewater by in-situ ferrite process.
    Hao H; Wang Y; Shi B; Han K; Zhuang Y; Kong Y; Huang X
    J Environ Sci (China); 2018 Nov; 73():107-116. PubMed ID: 30290859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A prototype of novel agro-waste based column bed device for removal of textile dye Optilan Red.
    Gita S; Shukla SP; Choudhury TG; Prakash C; Singh AR
    Water Sci Technol; 2017 Sep; 76(5-6):1251-1260. PubMed ID: 28876267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The treatment of textile wastewater including chromium(VI) and reactive dye by sulfate-reducing bacterial enrichment.
    Cetin D; Dönmez S; Dönmez G
    J Environ Manage; 2008 Jul; 88(1):76-82. PubMed ID: 17363134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation, characterization, and dye removal study of activated carbon prepared from palm kernel shell.
    García JR; Sedran U; Zaini MAA; Zakaria ZA
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5076-5085. PubMed ID: 28391459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of cationic dyes from aqueous solutions using microspherical particles of fly ash.
    Witek-Krowiak A; Szafran RG; Modelski S; Dawiec A
    Water Environ Res; 2012 Feb; 84(2):162-9. PubMed ID: 22515067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Waste metal hydroxide sludge as adsorbent for a reactive dye.
    Santos SC; Vílar VJ; Boaventura RA
    J Hazard Mater; 2008 May; 153(3):999-1008. PubMed ID: 17976902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste.
    Sewu DD; Boakye P; Woo SH
    Bioresour Technol; 2017 Jan; 224():206-213. PubMed ID: 27839858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies.
    Carvallho MN; da Silva KS; Sales DC; Freire EM; Sobrinho MA; Ghislandi MG
    Water Sci Technol; 2016; 73(9):2189-98. PubMed ID: 27148721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of jute processing wastes for treatment of wastewater contaminated with dye and other organics.
    Banerjee S; Dastidar MG
    Bioresour Technol; 2005 Nov; 96(17):1919-28. PubMed ID: 16084372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A green approach for the treatment of dye and surfactant contaminated industrial wastewater.
    Gül ÜD
    Braz J Biol; 2020 Sep; 80(3):615-620. PubMed ID: 31644655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast and considerable adsorption of methylene blue dye onto graphene oxide.
    Zhang W; Zhou C; Zhou W; Lei A; Zhang Q; Wan Q; Zou B
    Bull Environ Contam Toxicol; 2011 Jul; 87(1):86-90. PubMed ID: 21567134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of adaptive heuristic criticism control (AHCC) to dye wastewater.
    Zeybek Z; Karapinar T; Alpbaz M; Hapoglu H
    J Environ Manage; 2007 Sep; 84(4):461-72. PubMed ID: 16949196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon.
    Ozer A; Dursun G
    J Hazard Mater; 2007 Jul; 146(1-2):262-9. PubMed ID: 17204366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of carboxymethyl polysaccharides as bio-sorbents for the sequestration of heavy metals in aquatic environments.
    Musarurwa H; Tavengwa NT
    Carbohydr Polym; 2020 Jun; 237():116142. PubMed ID: 32241430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.