BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19844752)

  • 41. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater.
    Wang S; Soudi M; Li L; Zhu ZH
    J Hazard Mater; 2006 May; 133(1-3):243-51. PubMed ID: 16310947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. One-step synthesis of Cu(II) metal-organic gel as recyclable material for rapid, efficient and size selective cationic dyes adsorption.
    Wu Q; He L; Jiang ZW; Li Y; Zhao TT; Li YH; Huang CZ; Li YF
    J Environ Sci (China); 2019 Dec; 86():203-212. PubMed ID: 31787185
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of hen feathers as potential adsorbent for the removal of a hazardous dye, Brilliant Blue FCF, from wastewater.
    Mittal A
    J Hazard Mater; 2006 Feb; 128(2-3):233-9. PubMed ID: 16221529
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heavy metal removal from industrial wastewater by clinoptilolite.
    Kocasoy G; Sahin V
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Dec; 42(14):2139-46. PubMed ID: 18074286
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spectrophotometric investigation of the interactions between cationic (C.I. Basic Blue 9) and anionic (C.I. Acid Blue 25) dyes in adsorption onto extracted cellulose from Posidonia oceanic in single and binary system.
    Ben Douissa N; Dridi-Dhaouadi S; Mhenni MF
    Water Sci Technol; 2016; 73(9):2211-21. PubMed ID: 27148723
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The adsorption and Fenton behavior of iron rich Terra Rosa soil for removal of aqueous anthraquinone dye solutions: kinetic and thermodynamic studies.
    Aktas D; Dizge N; Cengiz Yatmaz H; Caliskan Y; Ozay Y; Caputcu A
    Water Sci Technol; 2017 Dec; 76(11-12):3114-3125. PubMed ID: 29210697
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Removal of dyes from aqueous solutions using activated carbon prepared from rice husk residue.
    Li Y; Zhang X; Yang R; Li G; Hu C
    Water Sci Technol; 2016; 73(5):1122-8. PubMed ID: 26942535
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel hybrid biosorbents of agar: Swelling behaviour, heavy metal ions and dye removal efficacies.
    Rani GU; Konreddy AK; Mishra S
    Int J Biol Macromol; 2018 Oct; 117():902-910. PubMed ID: 29802923
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters.
    Liu X; Lee DJ
    Bioresour Technol; 2014 May; 160():24-31. PubMed ID: 24461254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals.
    Ahmaruzzaman M
    Adv Colloid Interface Sci; 2011 Aug; 166(1-2):36-59. PubMed ID: 21669401
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.
    Oliveira LC; Gonçalves M; Oliveira DQ; Guerreiro MC; Guilherme LR; Dallago RM
    J Hazard Mater; 2007 Mar; 141(1):344-7. PubMed ID: 16901630
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic and adsorption study of acid dye removal using activated carbon.
    Gómez V; Larrechi MS; Callao MP
    Chemosphere; 2007 Oct; 69(7):1151-8. PubMed ID: 17531288
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation and characterization of activated carbon produced from tannery solid waste applied for tannery wastewater treatment.
    Mella B; Benvenuti J; Oliveira RF; Gutterres M
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6811-6817. PubMed ID: 30635876
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewater with low-cost adsorbents.
    Ramesh A; Lee DJ; Wong JW
    J Colloid Interface Sci; 2005 Nov; 291(2):588-92. PubMed ID: 16181632
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent advances on biosorption by aerobic granular sludge.
    Wang L; Liu X; Lee DJ; Tay JH; Zhang Y; Wan CL; Chen XF
    J Hazard Mater; 2018 Sep; 357():253-270. PubMed ID: 29890422
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sonochemical treatment of fly ash for dye removal from wastewater.
    Wang S; Zhu ZH
    J Hazard Mater; 2005 Nov; 126(1-3):91-5. PubMed ID: 16046059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite.
    Panayotova MI
    Waste Manag; 2001; 21(7):671-6. PubMed ID: 11530923
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tunable surface charge of ZnS:Cu nano-adsorbent induced the selective preconcentration of cationic dyes from wastewater.
    Wang Y; Chen D; Wang Y; Huang F; Hu Q; Lin Z
    Nanoscale; 2012 Jun; 4(12):3665-8. PubMed ID: 22618852
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facile fabrication of functional chitosan microspheres and study on their effective cationic/anionic dyes removal from aqueous solution.
    Yu S; Cui J; Jiang H; Zhong C; Meng J
    Int J Biol Macromol; 2019 Aug; 134():830-837. PubMed ID: 31054309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recovery of proteins from wastewater of tannery beamhouse operations: influence on the main pollution parameters.
    Marsal A; Hernández E; Cuadros S; Puig R; Bautista E; Font J
    Water Sci Technol; 2010; 62(3):658-66. PubMed ID: 20706013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.