These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19844913)

  • 41.
    Masson F; Calderon Copete S; Schüpfer F; Garcia-Arraez G; Lemaitre B
    mBio; 2018 Mar; 9(2):. PubMed ID: 29559567
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptomic immune response of the cotton stainer Dysdercus fasciatus to experimental elimination of vitamin-supplementing intestinal symbionts.
    Bauer E; Salem H; Marz M; Vogel H; Kaltenpoth M
    PLoS One; 2014; 9(12):e114865. PubMed ID: 25490201
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insect multicopper oxidases: diversity, properties, and physiological roles.
    Dittmer NT; Kanost MR
    Insect Biochem Mol Biol; 2010 Mar; 40(3):179-88. PubMed ID: 20219675
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria.
    Qin S; Xing K; Jiang JH; Xu LH; Li WJ
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):457-73. PubMed ID: 20941490
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Host-symbiont conflict over the mixing of symbiotic lineages.
    Frank SA
    Proc Biol Sci; 1996 Mar; 263(1368):339-44. PubMed ID: 8920255
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Advances in insect obligate endosymbionts and their genomes--a review].
    Rao Q; Wu H
    Wei Sheng Wu Xue Bao; 2014 Jul; 54(7):728-36. PubMed ID: 25252453
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tapping the biotechnological potential of insect microbial symbionts: new insecticidal porphyrins.
    Martinez AFC; de Almeida LG; Moraes LAB; Cônsoli FL
    BMC Microbiol; 2017 Jun; 17(1):143. PubMed ID: 28655338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Searching for evidence against the mutualistic nature of hereditary symbioses: a comment on Faeth.
    Rudgers JA; Davitt AJ; Clay K; Gundel PE; Omacini M
    Am Nat; 2010 Jul; 176(1):99-103. PubMed ID: 20500038
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacterial adaptation to life in association with plants - A proteomic perspective from culture to in situ conditions.
    Knief C; Delmotte N; Vorholt JA
    Proteomics; 2011 Aug; 11(15):3086-105. PubMed ID: 21548095
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The diversity of insect-bacteria interactions and its applications for disease control.
    Shanchez-Contreras M; Vlisidou I
    Biotechnol Genet Eng Rev; 2008; 25():203-43. PubMed ID: 21412357
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbes in the gut: a digestable account of host-symbiont interactions.
    Pai R; Kang G
    Indian J Med Res; 2008 Nov; 128(5):587-94. PubMed ID: 19179677
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Insect-microbe interactions: the good, the bad and the others.
    Herren J; Lemaitre B
    Curr Opin Microbiol; 2012 Jun; 15(3):217-9. PubMed ID: 22682969
    [No Abstract]   [Full Text] [Related]  

  • 53. Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications.
    Martin M; Portetelle D; Michel G; Vandenbol M
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):2917-35. PubMed ID: 24562178
    [TBL] [Abstract][Full Text] [Related]  

  • 54. It takes a village: ecological and fitness impacts of multipartite mutualism.
    Hussa EA; Goodrich-Blair H
    Annu Rev Microbiol; 2013; 67():161-78. PubMed ID: 23799814
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans.
    Klepzig KD; Adams AS; Handelsman J; Raffa KF
    Environ Entomol; 2009 Feb; 38(1):67-77. PubMed ID: 19791599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Models and approaches to dissect host-symbiont specificity.
    Mandel MJ
    Trends Microbiol; 2010 Nov; 18(11):504-11. PubMed ID: 20729086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of gut symbionts of insect pests: A novel target for insect-pest control.
    Rupawate PS; Roylawar P; Khandagale K; Gawande S; Ade AB; Jaiswal DK; Borgave S
    Front Microbiol; 2023; 14():1146390. PubMed ID: 36992933
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molting-associated suppression of symbiont population and up-regulation of antimicrobial activity in the midgut symbiotic organ of the Riptortus-Burkholderia symbiosis.
    Kim JK; Han SH; Kim CH; Jo YH; Futahashi R; Kikuchi Y; Fukatsu T; Lee BL
    Dev Comp Immunol; 2014 Mar; 43(1):10-4. PubMed ID: 24201132
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The evolutionary development of plant-feeding insects and their nutritional endosymbionts.
    Skidmore IH; Hansen AK
    Insect Sci; 2017 Dec; 24(6):910-928. PubMed ID: 28371395
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Termites as targets and models for biotechnology.
    Scharf ME
    Annu Rev Entomol; 2015 Jan; 60():77-102. PubMed ID: 25341102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.