These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19845017)

  • 1. Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy.
    Wang Q; Niemi J; Tan CM; You L; West M
    Cytometry A; 2010 Jan; 77(1):101-10. PubMed ID: 19845017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning.
    Lugagne JB; Lin H; Dunlop MJ
    PLoS Comput Biol; 2020 Apr; 16(4):e1007673. PubMed ID: 32282792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.
    Stylianidou S; Brennan C; Nissen SB; Kuwada NJ; Wiggins PA
    Mol Microbiol; 2016 Nov; 102(4):690-700. PubMed ID: 27569113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated image analysis platform to quantify signal transduction in single cells.
    Pelet S; Dechant R; Lee SS; van Drogen F; Peter M
    Integr Biol (Camb); 2012 Oct; 4(10):1274-82. PubMed ID: 22976484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ESC-Track: A computer workflow for 4-D segmentation, tracking, lineage tracing and dynamic context analysis of ESCs.
    Fernández-de-Manúel L; Díaz-Díaz C; Jiménez-Carretero D; Torres M; Montoya MC
    Biotechniques; 2017 May; 62(5):215-222. PubMed ID: 28528574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BactImAS: a platform for processing and analysis of bacterial time-lapse microscopy movies.
    Mekterović I; Mekterović D; Maglica Z
    BMC Bioinformatics; 2014 Jul; 15(1):251. PubMed ID: 25059528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FogBank: a single cell segmentation across multiple cell lines and image modalities.
    Chalfoun J; Majurski M; Dima A; Stuelten C; Peskin A; Brady M
    BMC Bioinformatics; 2014 Dec; 15(1):431. PubMed ID: 25547324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cell Segmentation/Tracking Tool Based on Machine Learning.
    Deter HS; Dies M; Cameron CC; Butzin NC; Buceta J
    Methods Mol Biol; 2019; 2040():399-422. PubMed ID: 31432490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TLM-Tracker: software for cell segmentation, tracking and lineage analysis in time-lapse microscopy movies.
    Klein J; Leupold S; Biegler I; Biedendieck R; Münch R; Jahn D
    Bioinformatics; 2012 Sep; 28(17):2276-7. PubMed ID: 22772947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquiring fluorescence time-lapse movies of budding yeast and analyzing single-cell dynamics using GRAFTS.
    Zopf CJ; Maheshri N
    J Vis Exp; 2013 Jul; (77):e50456. PubMed ID: 23892428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy.
    Young JW; Locke JC; Altinok A; Rosenfeld N; Bacarian T; Swain PS; Mjolsness E; Elowitz MB
    Nat Protoc; 2011 Dec; 7(1):80-8. PubMed ID: 22179594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LEVER: software tools for segmentation, tracking and lineaging of proliferating cells.
    Winter M; Mankowski W; Wait E; Temple S; Cohen AR
    Bioinformatics; 2016 Nov; 32(22):3530-3531. PubMed ID: 27423896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking.
    Wood NE; Doncic A
    PLoS One; 2019; 14(3):e0206395. PubMed ID: 30917124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated analysis of time-lapse fluorescence microscopy images: from live cell images to intracellular foci.
    Dzyubachyk O; Essers J; van Cappellen WA; Baldeyron C; Inagaki A; Niessen WJ; Meijering E
    Bioinformatics; 2010 Oct; 26(19):2424-30. PubMed ID: 20702399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved detection of soma location and morphology in fluorescence microscopy images of neurons.
    Kayasandik CB; Labate D
    J Neurosci Methods; 2016 Dec; 274():61-70. PubMed ID: 27688018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphologically constrained and data informed cell segmentation of budding yeast.
    Bakker E; Swain PS; Crane MM
    Bioinformatics; 2018 Jan; 34(1):88-96. PubMed ID: 28968663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images.
    Selinummi J; Ruusuvuori P; Podolsky I; Ozinsky A; Gold E; Yli-Harja O; Aderem A; Shmulevich I
    PLoS One; 2009 Oct; 4(10):e7497. PubMed ID: 19847301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EllipTrack: A Global-Local Cell-Tracking Pipeline for 2D Fluorescence Time-Lapse Microscopy.
    Tian C; Yang C; Spencer SL
    Cell Rep; 2020 Aug; 32(5):107984. PubMed ID: 32755578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation of yeast cell's bright-field image with an edge-tracing algorithm.
    Wang L; Li S; Sun Z; Wen G; Zheng F; Fu C; Li H
    J Biomed Opt; 2018 Nov; 23(11):1-7. PubMed ID: 30456935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated segmentation of brain cells for clonal analyses in fluorescence microscopy images.
    Salvi M; Cerrato V; Buffo A; Molinari F
    J Neurosci Methods; 2019 Sep; 325():108348. PubMed ID: 31283938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.