These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 19845017)
41. Quantitative comparison of multiframe data association techniques for particle tracking in time-lapse fluorescence microscopy. Smal I; Meijering E Med Image Anal; 2015 Aug; 24(1):163-189. PubMed ID: 26176413 [TBL] [Abstract][Full Text] [Related]
42. Assessment of automated analyses of cell migration on flat and nanostructured surfaces. Grădinaru C; Lopacińska JM; Huth J; Kestler HA; Flyvbjerg H; Mølhave K Comput Struct Biotechnol J; 2012; 1():e201207004. PubMed ID: 24688640 [TBL] [Abstract][Full Text] [Related]
43. Spatio-temporal cell cycle phase analysis using level sets and fast marching methods. Padfield D; Rittscher J; Thomas N; Roysam B Med Image Anal; 2009 Feb; 13(1):143-55. PubMed ID: 18752984 [TBL] [Abstract][Full Text] [Related]
44. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. Sage D; Neumann FR; Hediger F; Gasser SM; Unser M IEEE Trans Image Process; 2005 Sep; 14(9):1372-83. PubMed ID: 16190472 [TBL] [Abstract][Full Text] [Related]
45. Threshold-based segmentation of fluorescent and chromogenic images of microglia, astrocytes and oligodendrocytes in FIJI. Healy S; McMahon J; Owens P; Dockery P; FitzGerald U J Neurosci Methods; 2018 Feb; 295():87-103. PubMed ID: 29221640 [TBL] [Abstract][Full Text] [Related]
46. Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images. Bogachev MI; Volkov VY; Markelov OA; Trizna EY; Baydamshina DR; Melnikov V; Murtazina RR; Zelenikhin PV; Sharafutdinov IS; Kayumov AR PLoS One; 2018; 13(5):e0193267. PubMed ID: 29715298 [TBL] [Abstract][Full Text] [Related]
47. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing. Mari JF; Saito JH; Neves AF; Lotufo CM; Destro-Filho JB; Nicoletti Mdo C Int J Neural Syst; 2015 Dec; 25(8):1550033. PubMed ID: 26510475 [TBL] [Abstract][Full Text] [Related]
48. Segmentation and intensity estimation of microarray images using a gamma-t mixture model. Baek J; Son YS; McLachlan GJ Bioinformatics; 2007 Feb; 23(4):458-65. PubMed ID: 17166856 [TBL] [Abstract][Full Text] [Related]
49. Simultaneous recovery of both bright and dim structures from noisy fluorescence microscopy images using a modified TV constraint. Xiao C; Smith ZJ; Chu K J Microsc; 2019 Jul; 275(1):24-35. PubMed ID: 31026068 [TBL] [Abstract][Full Text] [Related]
50. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Ducret A; Quardokus EM; Brun YV Nat Microbiol; 2016 Jun; 1(7):16077. PubMed ID: 27572972 [TBL] [Abstract][Full Text] [Related]
51. Single-cell quantification of molecules and rates using open-source microscope-based cytometry. Gordon A; Colman-Lerner A; Chin TE; Benjamin KR; Yu RC; Brent R Nat Methods; 2007 Feb; 4(2):175-81. PubMed ID: 17237792 [TBL] [Abstract][Full Text] [Related]
53. Model-based approach for tracking embryogenesis in Caenorhabditis elegans fluorescence microscopy data. Dzyubachyk O; Jelier R; Lehner B; Niessen W; Meijering E Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5356-9. PubMed ID: 19964674 [TBL] [Abstract][Full Text] [Related]
54. Computational framework for simulating fluorescence microscope images with cell populations. Lehmussola A; Ruusuvuori P; Selinummi J; Huttunen H; Yli-Harja O IEEE Trans Med Imaging; 2007 Jul; 26(7):1010-6. PubMed ID: 17649914 [TBL] [Abstract][Full Text] [Related]
55. Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume. Bonneau S; Dahan M; Cohen LD IEEE Trans Image Process; 2005 Sep; 14(9):1384-95. PubMed ID: 16190473 [TBL] [Abstract][Full Text] [Related]
57. Fast globally optimal segmentation of cells in fluorescence microscopy images. Bergeest JP; Rohr K Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):645-52. PubMed ID: 22003673 [TBL] [Abstract][Full Text] [Related]
58. A Tool for Alignment and Averaging of Sparse Fluorescence Signals in Rod-Shaped Bacteria. Goudsmits JMH; van Oijen AM; Robinson A Biophys J; 2016 Apr; 110(8):1708-1715. PubMed ID: 27119631 [TBL] [Abstract][Full Text] [Related]
59. Algorithms for cytoplasm segmentation of fluorescence labelled cells. Wählby C; Lindblad J; Vondrus M; Bengtsson E; Björkesten L Anal Cell Pathol; 2002; 24(2-3):101-11. PubMed ID: 12446959 [TBL] [Abstract][Full Text] [Related]
60. Using multimodal information for the segmentation of fluorescent micrographs with application to virology and microbiology. Held C; Wenzel J; Webel R; Marschall M; Lang R; Palmisano R; Wittenberg T Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6487-90. PubMed ID: 22255824 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]