These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 19845361)

  • 1. Deciphering low energy deactivation channels in adenine.
    Conti I; Garavelli M; Orlandi G
    J Am Chem Soc; 2009 Nov; 131(44):16108-18. PubMed ID: 19845361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast radiationless transition pathways through conical intersections in photo-excited 9H-adenine.
    Hassan WM; Chung WC; Shimakura N; Koseki S; Kono H; Fujimura Y
    Phys Chem Chem Phys; 2010; 12(20):5317-28. PubMed ID: 20358092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio studies on the radiationless decay mechanisms of the lowest excited singlet states of 9H-adenine.
    Perun S; Sobolewski AL; Domcke W
    J Am Chem Soc; 2005 May; 127(17):6257-65. PubMed ID: 15853331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved photoelectron and photoion fragmentation spectroscopy study of 9-methyladenine and its hydrates: a contribution to the understanding of the ultrafast radiationless decay of excited DNA bases.
    Canuel C; Elhanine M; Mons M; Piuzzi F; Tardivel B; Dimicoli I
    Phys Chem Chem Phys; 2006 Sep; 8(34):3978-87. PubMed ID: 17028688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-state model for the photophysics of adenine.
    Serrano-Andrés L; Merchán M; Borin AC
    Chemistry; 2006 Aug; 12(25):6559-71. PubMed ID: 16789030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study toward understanding ultrafast internal conversion of excited 9H-adenine.
    Chen H; Li S
    J Phys Chem A; 2005 Sep; 109(38):8443-6. PubMed ID: 16834239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond time- and wavelength-resolved fluorescence and absorption spectroscopic study of the excited states of adenosine and an adenine oligomer.
    Kwok WM; Ma C; Phillips DL
    J Am Chem Soc; 2006 Sep; 128(36):11894-905. PubMed ID: 16953630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of cytosine singlet excited-state decay paths--a difficult case for CASSCF and CASPT2.
    Blancafort L
    Photochem Photobiol; 2007; 83(3):603-10. PubMed ID: 17017844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MODE-specific deactivation of adenine at the singlet excited states.
    Miyazaki M; Kang H; Choi CM; Han NS; Song JK; Kim NJ; Fujii M
    J Chem Phys; 2013 Sep; 139(12):124311. PubMed ID: 24089771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced dynamics of guanosine monophosphate in water from broad-band transient absorption spectroscopy and quantum-chemical calculations.
    Karunakaran V; Kleinermanns K; Improta R; Kovalenko SA
    J Am Chem Soc; 2009 Apr; 131(16):5839-50. PubMed ID: 19341282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast nonradiative dynamics in electronically excited hexafluorobenzene by femtosecond time-resolved mass spectrometry.
    Studzinski H; Zhang S; Wang Y; Temps F
    J Chem Phys; 2008 Apr; 128(16):164314. PubMed ID: 18447446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study on the singlet excited state of pterin and its deactivation pathway.
    Chen X; Xu X; Cao Z
    J Phys Chem A; 2007 Sep; 111(38):9255-62. PubMed ID: 17629256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed dynamics of the nonradiative deactivation of adenine: a semiclassical dynamics study.
    Lei Y; Yuan S; Dou Y; Wang Y; Wen Z
    J Phys Chem A; 2008 Sep; 112(37):8497-504. PubMed ID: 18714969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent effect on conical intersections in excited-state 9H-adenine: radiationless decay mechanism in polar solvent.
    Yamazaki S; Kato S
    J Am Chem Soc; 2007 Mar; 129(10):2901-9. PubMed ID: 17298065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excited-state potential energy surface for the photophysics of adenine.
    Blancafort L
    J Am Chem Soc; 2006 Jan; 128(1):210-9. PubMed ID: 16390149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The different photoisomerization efficiency of azobenzene in the lowest n pi* and pi pi* singlets: the role of a phantom state.
    Conti I; Garavelli M; Orlandi G
    J Am Chem Soc; 2008 Apr; 130(15):5216-30. PubMed ID: 18335990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-lying excited states and nonradiative processes of the adenine analogues 7H- and 9H-2-aminopurine.
    Lobsiger S; Sinha RK; Trachsel M; Leutwyler S
    J Chem Phys; 2011 Mar; 134(11):114307. PubMed ID: 21428619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring ultrafast H-atom elimination versus photofragmentation pathways in pyrazole following 200 nm excitation.
    Williams CA; Roberts GM; Yu H; Evans NL; Ullrich S; Stavros VG
    J Phys Chem A; 2012 Mar; 116(11):2600-9. PubMed ID: 21806002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conical intersections in thymine.
    Perun S; Sobolewski AL; Domcke W
    J Phys Chem A; 2006 Dec; 110(49):13238-44. PubMed ID: 17149840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-state model for the photophysics of guanine.
    Serrano-Andrés L; Merchán M; Borin AC
    J Am Chem Soc; 2008 Feb; 130(8):2473-84. PubMed ID: 18215036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.