These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19846049)

  • 1. Fluctuations in Rayleigh breakup induced by particulates.
    Clarke A; Rieubland S
    Adv Colloid Interface Sci; 2010 Dec; 161(1-2):15-21. PubMed ID: 19846049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-destabilizing mechanism of a laminar inviscid liquid jet issuing from a circular nozzle.
    Umemura A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046307. PubMed ID: 21599295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets.
    Castillo-Orozco E; Davanlou A; Choudhury PK; Kumar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053022. PubMed ID: 26651794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-valued breakup length of a water jet issuing from a finite-length nozzle under normal gravity.
    Umemura A; Kawanabe S; Suzuki S; Osaka J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036309. PubMed ID: 22060494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing.
    Yang Q; Li H; Li M; Li Y; Chen S; Bao B; Song Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41521-41528. PubMed ID: 29110465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive experimental dataset on large-amplitude Rayleigh-Plateau instability in continuous InkJet printing regime.
    Maîtrejean G; Cousin M; Truong F; Verdoot V; Hugenell F; Roux DCD
    Data Brief; 2024 Feb; 52():109941. PubMed ID: 38260863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel assembly of particles and wires on substrates by dictating instability evolution in liquid metal films.
    Fowlkes JD; Kondic L; Diez JA; González AG; Wu Y; Roberts NA; McCold CE; Rack PD
    Nanoscale; 2012 Dec; 4(23):7376-82. PubMed ID: 23041770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jet flow in steadily swimming adult squid.
    Anderson EJ; Grosenbaugh MA
    J Exp Biol; 2005 Mar; 208(Pt 6):1125-46. PubMed ID: 15767313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of liquid jet instability by confocal microscopy.
    Yang L; Adamson LJ; Bain CD
    Rev Sci Instrum; 2012 Jul; 83(7):073104. PubMed ID: 22852668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakup of double emulsion droplets in a tapered nozzle.
    Li J; Chen H; Stone HA
    Langmuir; 2011 Apr; 27(8):4324-7. PubMed ID: 21417281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcritical asymmetric Rayleigh breakup of a charged drop induced by finite amplitude perturbations in a quadrupole trap.
    Singh M; Gawande N; Mayya YS; Thaokar R
    Phys Rev E; 2021 May; 103(5-1):053111. PubMed ID: 34134216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evidence of a Rayleigh-plateau instability in free falling granular jets.
    Prado G; Amarouchene Y; Kellay H
    Phys Rev Lett; 2011 May; 106(19):198001. PubMed ID: 21668202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absolute instability of a liquid jet in a coflowing stream.
    Utada AS; Fernandez-Nieves A; Gordillo JM; Weitz DA
    Phys Rev Lett; 2008 Jan; 100(1):014502. PubMed ID: 18232775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drop formation via breakup of a liquid bridge in an AC electric field.
    Lee BS; Cho HJ; Lee JG; Huh N; Choi JW; Kang IS
    J Colloid Interface Sci; 2006 Oct; 302(1):294-307. PubMed ID: 16797576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An unbounded approach to microfluidics using the Rayleigh-Plateau instability of viscous threads directly drawn in a bath.
    Cai L; Marthelot J; Brun PT
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):22966-22971. PubMed ID: 31659022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Easy Printing of High Viscous Microdots by Spontaneous Breakup of Thin Fibers.
    Mecozzi L; Gennari O; Coppola S; Olivieri F; Rega R; Mandracchia B; Vespini V; Bramanti A; Ferraro P; Grilli S
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2122-2129. PubMed ID: 29278322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle characteristics responsible for effects on human lung epithelial cells.
    Aust AE; Ball JC; Hu AA; Lighty JS; Smith KR; Straccia AM; Veranth JM; Young WC
    Res Rep Health Eff Inst; 2002 Dec; (110):1-65; discussion 67-76. PubMed ID: 12578113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of soluble surfactants on the deformation and breakup of stretching liquid bridges.
    Liao YC; Subramani HJ; Franses EI; Basaran OA
    Langmuir; 2004 Nov; 20(23):9926-30. PubMed ID: 15518476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossover between Rayleigh-Taylor instability and turbulent cascading atomization mechanism in the bag-breakup regime.
    Rimbert N; Castanet G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016318. PubMed ID: 21867315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Nozzle Geometry on the Fluid Dynamics of Thin Liquid Films Flowing down Vertical Strings in the Rayleigh-Plateau Regime.
    Sadeghpour A; Zeng Z; Ju YS
    Langmuir; 2017 Jun; 33(25):6292-6299. PubMed ID: 28590759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.