BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19846283)

  • 1. Tat peptide mediated cellular uptake of SiO2 submicron particles.
    Mao Z; Wan L; Hu L; Ma L; Gao C
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):432-40. PubMed ID: 19846283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide.
    Wang H; Zhong CY; Wu JF; Huang YB; Liu CB
    J Control Release; 2010 Apr; 143(1):64-70. PubMed ID: 20025914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced cell uptake of superparamagnetic iron oxide nanoparticles through direct chemisorption of FITC-Tat-PEG₆₀₀-b-poly(glycerol monoacrylate).
    Wang C; Qiao L; Zhang Q; Yan H; Liu K
    Int J Pharm; 2012 Jul; 430(1-2):372-80. PubMed ID: 22531849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake and intracellular localization of submicron and nano-sized SiO₂ particles in HeLa cells.
    Al-Rawi M; Diabaté S; Weiss C
    Arch Toxicol; 2011 Jul; 85(7):813-26. PubMed ID: 21240478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved cytosolic translocation and tumor-killing activity of Tat-shepherdin conjugates mediated by co-treatment with Tat-fused endosome-disruptive HA2 peptide.
    Sugita T; Yoshikawa T; Mukai Y; Yamanada N; Imai S; Nagano K; Yoshida Y; Shibata H; Yoshioka Y; Nakagawa S; Kamada H; Tsunoda S; Tsutsumi Y
    Biochem Biophys Res Commun; 2007 Nov; 363(4):1027-32. PubMed ID: 17923117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells.
    Koch AM; Reynolds F; Kircher MF; Merkle HP; Weissleder R; Josephson L
    Bioconjug Chem; 2003; 14(6):1115-21. PubMed ID: 14624624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface coating directed cellular delivery of TAT-functionalized quantum dots.
    Wei Y; Jana NR; Tan SJ; Ying JY
    Bioconjug Chem; 2009 Sep; 20(9):1752-8. PubMed ID: 19681598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular uptake [correction of utake] of the Tat peptide: an endocytosis mechanism following ionic interactions.
    Vives E
    J Mol Recognit; 2003; 16(5):265-71. PubMed ID: 14523939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides.
    Gupta B; Levchenko TS; Torchilin VP
    Adv Drug Deliv Rev; 2005 Feb; 57(4):637-51. PubMed ID: 15722168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos.
    Chugh A; Eudes F
    FEBS J; 2008 May; 275(10):2403-14. PubMed ID: 18397318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications.
    Santra S; Yang H; Dutta D; Stanley JT; Holloway PH; Tan W; Moudgil BM; Mericle RA
    Chem Commun (Camb); 2004 Dec; (24):2810-1. PubMed ID: 15599418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size of submicrometric and nanometric particles affect cellular uptake and biological activity of macrophages in vitro.
    Leclerc L; Rima W; Boudard D; Pourchez J; Forest V; Bin V; Mowat P; Perriat P; Tillement O; Grosseau P; Bernache-Assollant D; Cottier M
    Inhal Toxicol; 2012 Aug; 24(9):580-8. PubMed ID: 22861001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postdiffusion of oligo-peptide within exponential growth multilayer films for localized peptide delivery.
    Wang X; Ji J
    Langmuir; 2009 Oct; 25(19):11664-71. PubMed ID: 19736942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The gene transfection efficiency of thermoresponsive N,N,N-trimethyl chitosan chloride-g-poly(N-isopropylacrylamide) copolymer.
    Mao Z; Ma L; Yan J; Yan M; Gao C; Shen J
    Biomaterials; 2007 Oct; 28(30):4488-500. PubMed ID: 17640726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological activity of Tat (47-58) peptide on human pathogenic fungi.
    Jung HJ; Park Y; Hahm KS; Lee DG
    Biochem Biophys Res Commun; 2006 Jun; 345(1):222-8. PubMed ID: 16678135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection.
    Lo SL; Wang S
    Biomaterials; 2008 May; 29(15):2408-14. PubMed ID: 18295328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of surface-modified nanoparticles through cell monolayers.
    Koch AM; Reynolds F; Merkle HP; Weissleder R; Josephson L
    Chembiochem; 2005 Feb; 6(2):337-45. PubMed ID: 15651046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmembrane delivery of the cell-penetrating peptide conjugated semiconductor quantum dots.
    Chen B; Liu Q; Zhang Y; Xu L; Fang X
    Langmuir; 2008 Oct; 24(20):11866-71. PubMed ID: 18823093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular compartment targeting of layered double hydroxide nanoparticles.
    Xu ZP; Niebert M; Porazik K; Walker TL; Cooper HM; Middelberg AP; Gray PP; Bartlett PF; Lu GQ
    J Control Release; 2008 Aug; 130(1):86-94. PubMed ID: 18614254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intercellular imaging by a polyarginine derived cell penetrating peptide labeled magnetic resonance contrast agent, diethylenetriamine pentaacetic acid gadolinium.
    Guo YM; Liu M; Yang JL; Guo XJ; Wang SC; Duan XY; Wang P
    Chin Med J (Engl); 2007 Jan; 120(1):50-5. PubMed ID: 17254488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.